Curriculum & Syllabus for M.Sc. CHEMISTRY

(Four Semesters/ Full Time)

CURRICULUM

		SEMESTER I				
S. No.	Course Code	Course Title	L	т	Ρ	С
1.	CHC6101	Organic Chemistry	3	0	0	3
2.	CHC6102	Thermodynamics and Electrochemistry	3	0	0	3
3.	CHC6103	Inorganic Chemistry	3	0	0	3
4.	CHC6104	Analytical Chemistry	3	1	0	4
5.		Elective				3*
6.	CHC6105	Organic Chemistry Practical	0	0	4	2
7.	CHC6106	Inorganic Chemistry Practical -I	0	0	4	2
8.	CHC6107	Physical Chemistry Practical - I	0	0	4	2
	CHC6108	Seminar		2		1
		Total credits				23

		SEMESTER II				
S. No.	Course Code	Course Title	L	Т	Р	С
1	GEC6202	Research Methodology	3	0	0	3
2.	CHC6201	Synthetic Organic Chemistry	3	1	0	4
3.	CHC6202	Quantum Chemistry	3	1	0	4
4.	CHC6203	Coordination Chemistry	3	0	0	3
5.		Elective	3	1	0	4
7	CHC6204	Synthetic Organic Chemistry Practical	0	0	4	2
8.	CHC6205	Inorganic Chemistry Practical-II	0	0	4	2
9	CHC6206	Physical Chemistry Practical -II	0	0	4	2
		Total Credits				24

M.Sc.

		SEMESTER III				
S. No.	Course Code	Course Title	L	т	Р	с
1.	CHC7101	Advanced Organic Chemistry	3	0	0	3
2.	CHC7102	Physical Chemistry	3	0	0	3
3.	CHC7103	Advanced Inorganic Chemistry	3	0	0	3
		Elective				11**
	CHC7104	Internship (during summer vacation)				1
7	CHC7201	Project Phase -1				2***
		Total Credits				21

		SEMESTER IV				
S. No.	Course Code	Course Title	L	т	Р	С
1.	CHC7201	Project Phase -II	0	0		10
		Total Credits				12***

Total credits

=80

*Elective should be chosen with credit not less than 3

**Elective should be chosen with total credit not less than 11

*** Credit for Project Phase . I is incorporated in phase -II

LIST OF ELECTIVES

Course Code	Course Title	L	т	Р	С				
Basic Chemistry									
CHCY001	Green chemistry	3	0	2	4				
CHCY002 Molecular spectroscopy		3	1	0	4				

2

CHCY003	Photophysics and photochemistry	3	0	0	3
CHCY004	Photochemistry	3	0	0	3
	Medicinal ,Pharmaceutical and Biol	ogical C	hemistry		
CHCY005	Biochemistry	3	0	2	4
CHCY006	Pharmaceutical Technology	3	0	0	3
CHCY007	GMP, Quality Assurance and Validation	3	0	0	3
CHCY008	Medicinal and Pharmaceutical Chemistry	3	0	0	3
	Materials and Technol	logy		1	
CHCY009	Polymer Chemistry	3	0	2	4
CHCY010	Nanotechnology	3	0	2	4
CHCY011	Electrical Properties of Polymeric Materials	3	0	0	3
CHCY012	Polymer Structure and Property Relationship	3	0	0	3
CHCY013	Concepts and Techniques in Catalysis	3	0	0	3
CHCY014	Polymer Technology	3	0	0	3
CHCY015	Inorganic Chemical Technology	3	0	0	3
CHCY016	Organic Chemical Technology	3	0	0	3
CHCY017	Chlor-alkali Technology	3	0	0	3
CHCY018	Module Operations and module Processes	3	0	0	3
	Energy ,Water and Enviro	onment		1	
CHCY019	Water and Waste Water Treatment	3	0	0	3
CHCY020	Solid Waste Management and Air Pollution	3	0	0	3
CHCY021	Industrial Electrochemistry	3	0	0	3
CHCY022	Corrosion and Corrosion Control	3	0	0	3
CHCY023	Electrochemical Protection Systems	3	0	0	3
CHCY024	Metal Coating Technology	3	0	0	3
CHCY025	Protective Coatings	3	0	0	3

CHCY026	Fuel Cells and Applications	3	0	0	3
CHCY027	Advanced Batteries and Systems	3	0	0	3
CHCY028	Electrochemical Material Science	3	0	0	3
CHCY029	Electrochemical Energy Conversion and Storage	3	0	0	3
CHCY030	Solar energy	3	0	0	3
	Advanced/Special Elec	tives			
CHCY031	Chemistry of Carbohydrates	3	0	0	3
CHCY032	Advanced Concepts in Organic Synthesis	3	0	0	3

CHC6101	ORGANIC CHEMISTRY		T	Ρ	С
		3	0	0	3
OBJECTIVES:		I			
To make the stud	ent conversant with				
• The basic	concepts in stereochemistry.				
Reactive in	termediates in organic reactions				
Mechanisn	n of nucleophilic substitution reaction				
 concepts c 	f aromaticity and aromatic electrophilic s	ubstitution rea	ction		
 mechanism 	n of addition reaction				
mechanisn	n of elimination reactions				
MODULE I	STEREOCHEMISTRY I				9

Introduction to molecular symmetry and point groups . optical isomerism . conditions for optical activity . Newmann, Sawhorse and Fisher projection formulae . Interconversion . concept of chirality . R,S-nomenclature - geometrical isomerism . E,Z nomenclature . determination of configuration of geometrical isomers using physical and chemical methods - optical activity of biphenyls, allenes and spiranes, cyclophanes, helical chirality - ANSA compounds.

9

9

9

MODULE II	REACTIVE INTERMEDIATES & REACTION MECHANISM	Ī
-----------	---	---

Formation and stability of carbonium ions, norbornyl cation and other non-classical carbocations and classical carbocations, Bredtos rule - carbanions, carbenes, nitrenes, free radicals, arynes, ylides - methods of generation and reactivity and applications - Kinetic and nonkinetic methods to determine the reaction mechanism: Thermodynamic and Kinetic controlled reactions Non-kinetic methods -Kinetic methods . methods of determining mechanism

MODULE III

NUCLEOPHILIC SUBSTITUTIONS

 S_N1 , S_N2 , Neighboring group participation and S_Ni , S_NAr mechanisms . effects of substrate, attacking nucleophile, leaving group and solvent . stereochemistry of nucleophilic substitution reactions . substitutions at carbonyl, bridgehead, vinylic and allylic carbons, Ambident nucleophiles - O versus C alkylation . activated aromatic nucleophilic substitution

MODULE IV AROMATICITY AND AROMATIC ELECTROPHILIC SUBSTITUTION REACTIONS

Aromaticity . concept . Huckel and Craig rules . Aromatic and anti aromatic compounds . benzenoid, non-benzenoid and homo aromatic compounds . antiaromaticity - Annulenes . Aromaticity in cyclopentadienyl anion, tropolone, ferrocenes, fullerenes, azulenes, fulvenes, azirines, heteroaromatic systems and charged ring systems . NMR and aromaticity - Reactions of aryl diazonium salts . aromatic electrophilic substitution reactions and mechanisms.

MODULE V ADDITION AND ELIMINATION REACTIONS

Addition to carbon-carbon and carbon-hetero multiple bonds . electrophilic, nucleophilic and free radical additions . stereochemistry of addition to carbon-carbon multiple bonds . orientation and reactivity, addition to conjugated systems and orientation . addition to , -unsaturated carbonyl groups . E1, E2 and E1_{CB} mechanisms . stereochemistry of E2 elimination . competition between elimination and substitution reactions . orientation effects in elimination reactions . effects of

substrate structures, attacking base, leaving group and medium on E1 and E2 reactions. pyrolytic eliminations - Chugaev and Cope eliminations. Petersong and Julia elimination. L – 45; Total Hours –45 **REFERENCES:** Michael B. Smith and Jerry March, Advanced Organic Chemistry, Reactions, 1. Mechanisms and Structure 7th Edition, Wiley Intersciences, New York, 2009. 2. Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry, Part A. Structure and Mechanisms, 5th Edition, Springer, 2007. 3. Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry, Part B: Reactions and Synthesis, 5th Edition, Springer, 2007. Morrison R.T., Boyd R.N. and Battacharjee S.K., Organic Chemistrv. 7th 4. Edition, Pearsons, 2007. 5. Eliel E.L. and Wilen S.H., Stereochemistry of Organic Compounds, John Wiley India, 2009. Nasipuri D., Stereochemistry of Organic Compounds, 2nd Edition, Wiley 6. Eastern Ltd., 1991. 7. Kalsi P.S., Stereochemistry of Organic Compounds, Wiley Eastern Ltd., New Delhi, 1992. 8. Peter Sykes, Guidebook to Mechanism in Organic Chemistry, Orient Longman, 2005. OUTCOMES: The students will be able to assign stereochemical configuration Distinguish the different types of organic reaction intermediates Postulate the mechanism of nucleophilic substitution reaction recognize the aromaticity and aromatic electrophilic substitution reaction suggest the mechanism of addition reaction •

depict the mechanism of elimination reactions

CHC6102	THERMODYNAMICS AND ELECTROCHEN	NISTRY	L	Т	P	С
			3	0	0	3
			1			
OBJECTIVES	:					
To make the s	tudent conversant with					
 laws of 	chemical thermodynamics					
 applica 	ions of Vant Hoffo equation in chemical thern	nodynami	cs			
 applica 	ion of partition function					
 applica 	ions of onsager reciprocal relation					
 various 	models of electrical double layer					
applica	ions of Butler-Volmer equation and Tafel equation	ation				
MODULE I	CHEMICAL THERMODYNAMICS-1					9
First law of th	ermodynamics. Joule-Thomson effect. the	ermochen	nistr	у. :	stan	dard
enthalpy chan	ges. standard enthalpies of formation. seco	nd law of	the	rmod	lyna	mics
. free energy	and work function. Maxwell relations. third	law of th	erm	odyr	nami	CS.
evaluation of a	bsolute entropies of solids, liquids and gases					
MODULE II	CHEMICAL THERMODYNAMICS-2					9
Clausius-Clap	eyron equation - determination of par	tial mola	ar	quar	ntitie	:S -
thermodynami	c aspects of extract ion of metals- reduction	of oxides	s an	d su	lphic	les -
Ellingham diag	ram and its significances - partial molar prop	erties . c	hem	nical	pote	ential
. vant Hoffos, e	quation . Gibbs-Duhem equation.					
MODULE III	STATISTICAL THERMODYNAMICS					9
-	statistical thermodynamics . probability . mic					
•	able and indistinguishable particles . permu					
waxwell-Boltz	nann statistics . third law of thermodynamics	and exc	epti	on to	this	aw

		, ,		5	
. use o	of partition fur	ection for obtain	ing the	rmodynamic functions.	
MODU	ILE IV	NON-EQUILIE	BRIUM	THERMODYNAMICS	9
Steady	v state . con	servation of en	ergy ar	nd mass . entropy production and en	tropy
flow in	open system	n. fluxes and	forces	. transformation of properties of rates	and
affinity	. microscop	oic reversibility	and O	nsager reciprocal relation . thermoki	inetic
effect .	irreversible	thermodynamic	s for no	on-linear regime.	
MODU		ELECTROCH	FMIST	RV	9
	LE V			, , , , , , , , , , , , , , , , , , ,	
lon-sol	vent and ion-	ion interactions	s, ion tr	ansport in solutions . electrochemical	cells
electric	al double lay	er. various mo	odels .	electrocapillary phenomena . electroki	inetic
phenoi	mena . elect	troosmosis . s	treamin	g potential and electrophoresis. Tis	selius
appara	tus . kinetics	of electrode pr	ocesse	s. Butler-Volmer equation - Tafel equa	ation.
		[<u> </u>	Γ	
				L – 45; Total Hours	3 –45
REFE	RENCES:				
1.	Atkins P., an	d Paula J.D. I	Physica	al Chemistry, 7 th Edition, Oxford Unive	ersitv
	Press, Londo				5101.5
			Phys	ical Chemistry, 1 st Edition, John Wiley	/ and
	Sons Inc., 19		, ,		
			Chemist	ry, 3 rd Edition, Narosa Publishing Ho	ouse,
	2004.	· •		-	
4.	Kuriacose J.	C. and Rajaran	n J., Tł	nermodynamics for Students of Chem	istry,
	3 rd Edition, S	. Chand and Co	., New	Delhi, 2001.	
5.	Crow D.R., P	rinciples and A	pplicati	on of Electrochemistry, Chapman and	Hall,
	1988.				

OUTCOMES:

The students will be able to comprehend the

- laws of chemical thermodynamics
- applications vant Hoff equation in chemical thermodynamics

- application of partition function
- applications of onsager reciprocal relation and microscopic reversibility
- various models of electrical double layer
- applications of Butler-Volmer equation and Tafel equation

CHC6103	INORGANIC CHEMISTRY	Т	Ρ	С
	3	0	0	3
OBJECTIVES:				
To make the stu	dent conversant with			
Periodic	properties of elements,			
Bonding	n inorganic molecules,			
 Types of 	non-valence forces,			
 Concepts 	of non-aqueous solvents,			
 Types of 	crystal structure.			
MODULE I	ATOMIC STRUCTURE			9
Modern views	on atomic structure . Wave equation . hydrogen at	om	and	poly
electron atoms	electronic configuration and term symbols, periodic	prop	ertie	es of
elements . ator	nic size, ionization energy, electron affinity, electro negat	ivity,	cov	alent
and ionic radii a	nd magnetic properties.			
MODULE II	COVALENT BOND			9
Valence bond	theory . hybridization and resonance . diatomic an	d po	olyat	omic
systems - VSE	PR theory - molecular orbital theory . LCAO appr	oxim	atior	n for
diatomic and po	lyatomic systems.			
MODULE III	IONIC AND NON-VALENCE FORCES			9
vander waalsq	orces . hydrogen bond . clathrates, metallic bond .	free	eleo	ctron

theory of metals, ionic solids . lattice energy . Born-Haber cycle.						
MODULE IV	AQUEOUS A	ND NO	N-AQUEOUS CHEMISTRY	9		
Acid base concents		aupor	acide non aqueque achiente reaction	n in		
		•	acids, non-aqueous solvents . reactior blvents - molten salts - electrode poten			
and applications in i	•		sivents - molten saits - electrode poten	11213		
		10.				
MODULE V	MODULE V CRYSTAL STRUCUTRE			9		
Radius ratio stru	Ictures of AX	AX ₂ A	$_2X_3$, ABX $_3$ and A $_2$ BX $_4$ type solids . Is	aver		
			ds. diamond and graphite - Polymorph	•		
and X-Ray Diffraction						
			L – 45; Total Hours	-45		
REFERENCES:						
1. Cotton F.A., W	ilkinson G. and	Gaus	P.L., Basic Inorganic Chemistry, 3 rd Edi	tion,		
John Wiley and	New York, 200	3.				
2. Atkins P.W., O	verton T., Rou	rke, J.,	Weller, M. and Armstrong, F. Shriver	and		
Atkins inorganic	chemistry, 4 th	edition,	Oxford University Press, 2006.			
3. Huheey J.E.,	Keiter E.A. an	d Keite	er R.L., Inorganic Chemistry, 4 th Edi	tion.		
Addision Wesle				,		
4. Jolly W.L., Mod	ern Inorganic C	hemistr	ry, 2 nd Edition, McGraw . Hill, Inc., 1991			
5. Lee J.D., Conci	se Inorganic Ch	nemistry	/, 5 th Edition, Blackwell Science, 2003.			
OUTCOMES						
OUTCOMES:						
Students will be able	e to					
 Demonstrate 	an understand	ing of th	ne basic principles of periodicity.			
 Demonstrate 	 Demonstrate an understanding of VSEPR theory. 					
• Illustrate an u	understanding c	of the pr	inciples of molecular orbital theory.			

 Recognize the different non valence forces and their influence on the physical & chemical properties

- Demonstrate an understanding of the basic principles of acid . base chemistry and non . aqueous solvents.
- Acquire the knowledge of structure of different types of solids.
- Learn structural arrangements and its stability based upon physical parameters.

CHC6104	ANALYTICAL CHEMISTRY	L	Т	Ρ	С
		3	1	0	4
OBJECTIVES:					
To make the st	ıdent				
 identify t 	ne right analytical method for a given sample and inforr	mat	tion i	requ	ired
 state the 	principles and applications of different wet chemical m	eth	ods		
 analyze 	the principles, instrumentation and applications of	fs	spect	trosc	opic
methods					
 describe 	the principles, instrumentation and applications of e	ele	ctroa	analy	/tica
techniqu	es				
 state the 	principles and instrumentation of different separation to	ecł	nniqu	les	
describe	the different thermal analytical methods and their appli	icat	tions	;	
MODULE I	QUANTITATIVE ANALYSIS				9
Volumetric ana	ysis . neutralization, precipitation, complexometric and	d re	edox	titra	tions
- Gravimetric a	nalysis . volatilization and precipitation methods - T	уре	es o	f err	or.
evaluation of a	alytical data - estimation of Na/K/Ca by flame photome	eter			
MODULE II	SEPARATION TECHNIQUES				9
Chromatograph	y . paper, column, TLC, GC, HPLC and GPC te	chr	nique	es .	ior
exchange tech	niques . Capillary electrophoresis . principle, instru	um	enta	tion	and

applic	ations- gel ele	ctrophoresis.				
MOD	JLE III	INTRODUCTI	ON TO	MOLECULAR SPECTROSCOPY	9	
Molec	ular spectros	copy: IR abs	orption	- Fluorescence, phosphorescence	and	
chemi	luminescence	methods -	Atomic	c absorption and atomic fluoresce	ence	
specti	roscopy - Em	ission spectros	scopy, t	flame photometry and ICP-AES princ	iple,	
instru	mentation and	analytical appli	cations			
MODULE IV ELECTROANALYTICAL TECHNIQUES						
Condu	uctometry and	I high frequen	cy titra	tions - potentiometry, pH-metry and	ion-	
select	ive electrode	s - coulometry	/. vo	oltammetry - polarography, amperom	etric	
titratio	ons and anodic	stripping volta	nmetry	- principle, practice and applications.		
MOD	JLE V	THERMAL ME	THOD	S OF ANALYSIS	9	
				A, DSC, DEA (dielectric thermal analysis)	
	· ·	• / •		e-programmed Desorption/ Reduction/		
		n (TPD / TPR /	TPO / T	TPS), . principle, instrumentation and		
Applic	ations					
				L – 45; T – 15; Total Hours	-45	
REFE	RENCES:					
1.	Skoog D.A.,	West D.M., I	Holler	F.J. and Crouch S.R., Fundamentals	s of	
	Analytical C	Chemistry, 8 th	Editio	n, Thomson Brooks/Cole Publicat	ion.,	
	Singapore, 20	004.				
2.	Willard H.H.,	Merritt L.L., De	ean J.A	. and Settle F.A., Instrumental Method	ls of	
	Analysis, 7 th	Edition, CBS Pu	ublicatio	on, New Delhi Reprint, 2004.		
3.	Skoog D.A.,	Holler F.J. and	Niema	n T.A., Principles of Instrumental Analy	ysis,	
	5 th Edition, Harcourt College Publication., Singapore, 1998.					
4.	Christian G.D	., Analytical Ch	emistry	, 6 th Edition, John Wiley, Singapore, 20	03.	
5.	Fifield F.W. a	ind Kealey D., I	Principl	es and Practice of Analytical Chemistry	', 5 th	
	Edition, Black	well Publication	n, Lond	on, 2000.		

6. Settle F. (Editor), Handbook of Instrumental Techniques for Analytical Chemistry, Pearson Education, Singapore, 2004.

OUTCOMES:

The student will be able to

- Identify the proper method and do the various chemical analysis
- isolate the compounds in a mixture by chromatographic techniques
- interpret the spectral data like UV-Visible,IR,
- apply electro analytical techniques
- interpret the thermal analysis data

CHC	6105	ORGANIC CHE	MISTR	Y PRACTICAL	L	Т	Ρ	С
					0	0	4	2
OBJE	ECTIVES:							
To m	ake the stude	ent conversant wit	th					
•	Separation	of two componen	nt mixtur	e				
•	analyze the	e functional groups	s presei	nt in simple organic o	compound	ds.		
•	Purification	techniques of org	ganic sc	lvents and reagents				
List o	of Experime	nts						
1.	Qualitative	analysis of simple	e organi	c compounds				
2.	Separation qualitative a		npounds	s with two compor	ient mixt	ures	and	d its
3.	distillation .	Purification of so	olids by	nd reagents - Pur recrystallization . Do t by capillary methoo	eterminat		-	
				Р	- 60; To	tal H	ours	-60

REFERENCES:

- 1. A.I. Vogel, Vogelos Textbook of Practical Organic Chemistry, 5th Edition, Prentice Hall, 2008.
- V.K Ahluwalia, R. Agarwal Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press, 2000.

OUTCOMES:

At the end of the course, the student will be able to

- Separate the different component mixtures of simple organic compounds.
- Analyze the functional groups present in simple organic compounds
- Purify the organic compounds by using recrystallisation and distillation techniques

CHC6106	INORGANIC CHEMISTRY PRACTICAL-I	L	Т	Ρ	С
		0	0	4	2

OBJECTIVES:

The students will be trained

- the purification process such as distillation, extraction, etc.
- to identify individual common and rare cations present in the given mixture
- to estimate the chloride ions present in water
- to estimate the various ions by titrimetry
- to estimate the ions such as iron, cobalt, nickel, chromium and manganese and spectral techniques

List of Experiments

1. Water distillation and solvent extraction

2. Semi-micro qualitative analysis: Analysis and identification of two common and two rare cations in a mixture including spot test confirmation

3. Estimation of chloride in water by Mohros method

- 4. Complexometric tirtrations: Estimation of Ca^{2+} , Mg^{2+} , Mn^{2+} and Zn^{2+}
- 5. Spectrophotometric analysis of iron, cobalt, nickel, chromium and manganese

P - 60; Total Hours –60		

REFERENCES:

- 1. Monograph on Green Chemistry Laboratory Experiments, Green Chemistry Task Force Committee, Department of Science and technology, India.
- Rakesh K. Sharma, Indu Tucker Sidhwani and Mihir K. Chaudhuri, Green Chemistry Experiments: A Monograph, I K International Publishing House; 1st Edition, 2012.
- 3. J. Mendham, R.C. Denney, M.J.K. Thomas David and J. Barnes, Vogel's Quantitative Chemical Analysis, 6th Edition, Prentice Hall, 2000.
- 4. V.V. Ramanujam, Inorganic Semimicro Qualitative Analysis; 3rd Edition, The National Publishing Company, Chennai, 1974.
- 5. Mukhopadhyay R and Chatterjee P, Advanced Practical Chemistry, Books & Allied (P) Ltd., 2007.
- 6. Dinesh Sharma, A Handbook of Analytical Inorganic Chemistry, International Scientific Publishing Academy, India, 2005.

OUTCOMES:

The students will be able to

- Distill water and other organic solvents
- Analyze the common and rare cations present in the given mixture

- Estimate the ions present in the sample by titrimetry
- Estimate the ions such as iron, cobalt, nickel, chromium and manganese present in the sample by spectral methods

СНС	6107	PHYSICAL CHEMISTRY PRACTICAL- I	L	Т	Ρ	С
			0	0	4	2
OBJ	ECTIVES:					<u> </u>
	To make th	e students trained to				
	Dete	rmine the equivalent conductance of strong electro	lyte	S		
	 Verif 	y the Ostwald dilution law				
	• do co	onductometric titrations				
	Dete	rmine the rate constant of first and second order rea	actio	ons		
	 Verif 	y Beer . Lambert law				
	Dete	rmine the molecular weight of a polymer				
	List of Exp	eriments				
1.	Equivalent	conductance of strong electrolytes and verification	of E	Deby	e Hu	ickel
	Onsager ec	uation				
2.	Verification	of Ostwald dilution law using weak acid and det	erm	ninati	on c	of its
	dissociation	constant				
3.	Conductom	etric titrations: acid-base and precipitation titrations				
4.	Determinati	on of rate constant				
5.	Saponificat	on of oils and fats				
6.	Temperatur	e dependence of solubility of benzoic acid in water	anc	I DM	SO	
7.	Determinati	on of activity coefficients of an electrolyte at differer	nt m	olali	ties	
8.	Verification	of Beer-Lambert equation				
9.	Determinati	on of molecular weight of a polymer by viscometry				

	P - 60; Total Hours –60					
REF	ERENCES:					
1.	V.D. Athawale, Experimental Physical Chemistry, New Age International, 2007.					
2.	B.D. Khosla, Senior Practical Physical Chemistry, R. Chand and Co., New Delhi, 2007.					
3.	B. Viswanathan and P.S. Raghavan, Practical Physical Chemistry, Viva Books Pvt. Ltd., 2005.					
4.	D.R. Satiya, Practical Chemistry, 2 nd Edition, Allied Publishers, Madras, 1991.					
5.	 D.P. Shoemaker and C.W. Garland, Experiments in Physical Chemistry, McGraw Hill, London, 1962. 					
	OUTCOMES:					
רטס	TCOMES:					
	students will be able to					
	students will be able to					
	students will be able toDetermine the equivalent conductance of strong electrolytes					
	 students will be able to Determine the equivalent conductance of strong electrolytes Verify the Ostwald dilution law 					
	 students will be able to Determine the equivalent conductance of strong electrolytes Verify the Ostwald dilution law do conductometric titrations 					

GEC6202	EC6202 RESEARCH METHODOLOGY		Т	Ρ	С		
		3	0	0	3		
OBJECTIVES:							
The students will be trained to							

- Select and Define a research problem
- Describe the Methodology of Research
- Acquire good laboratory practices
- Operate the software for Programming techniques
- Analyze and Interpret the Results
- Demonstrate the Plagiarism check by turtin

MODULE I	RESEARCH METHODOLOGY- AN INTRODUCTION	

Research: Objectives, Motivation and types - Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Research Process, Criteria of Good Research, Problems Encountered by Researchers -Introduction to ethics, scientific conduct and misconduct, Misconduct and why it occurs, Fabrication, Authorship issues, The investigation and punishment of scientific misconduct.

MODULE II	GOOD LABORATORY PRACTICES AND SAFETY	9

Introduction: History, definition, Principles, Good Laboratory Practices (GLP) and its application GLP training: Resources, Rules, Characterization, Documentation, quality assurance, Resources, Facilities: building and equipment, Personnel, GLP and FDA, Stepwise implementation of GLP and compliance monitoring. Safety Symbols, Science Safety Rules- Dress Code, First Aid, Heating and Fire Safety

MO	DU	LE	Ш

PROGRAMMING TECHNIQUES

Data analysis using Excel, Origin and Sigma plot Analyzing the chemical data and drawing chemical structures using Chemdraw and Chemsketch. Basics of C and C++ programme . MATLAB . Numerical Methods . Ordinary Differential Equation . Partial Differential Equation . Runge Kutta Method.

MODULE IV INTERPRETATION OF RESULTS AND ANALYSIS 9

Importance and scientific methodology in recording results, importance of negative results, different ways of recording, industrial requirement, artifacts versus true results, types of analysis (analytical, objective, subjective) and cross verification,

9

correlation with published results, discussion, outcome as new idea, hypothesis, concept, theory, model etc.

Conceptions of error of measurement, true score theory and generalisability theory. Measures of central tendency or averages . mean median and mode. Measures of dispersion . range, variance, and standard deviation: The normal distribution and the normal probability curve.

MODULE V SCIENTIFIC WRITING, TECHNICAL PUBLICATION AND 9 RESEARCH PROPOSAL

Different types of scientific and technical publications in the area of research, and their specifications, Ways to protect intellectual property . Patents, technical writing skills, definition and importance of impact factor and citation index - assignment in technical writing, The research problem, finding related literature, computer generated references sources and the research project, model research proposal. Plagiarism checking by Turtin . demonstration

REFERENCES:

- 1 Essentials of Research Design and Methodology Geoffrey R. Marczyk, David DeMatteo, David Festinger, 2005 John Wiley & Sons Publishers, Inc
- 2 Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 2nd Edition, Irwin H. Segel, 1976 John Wiley & Sons Publishers, Inc
- 3 Guide to Publishing a Scientific paper, Ann M. Korner, 2004, Bioscript Press.
- 4 P Laake, H B Benestad, B R Olsen. Research Methodology in the medical and biological sciences. Academic Press, 2007.
- 5 R Arora. Encyclopaedia of Research Methodology in Biological Sciences. Anmol Publishing, 2004.
- 6 Kothari C.R., Research Methodology, Methods and Techniques, Wiley Eastern Ltd., NewDelhi, 1991.
- 7 Coghill M. and Gardson L.R., The ACS Style Guide Effective Communication

of Scientific Information, 3rd Edn., Oxford University Press, 2006.

8 Willa Y. Garner, Maureen S. Barge, James, P, Good Laboratory Practice Standards: Applications for Field and Laboratory Studies (ACS Professional References Book).

OUTCOMES:

At the end of this course, the students should be able to:

- recognize the basic concepts of research and its methodologies
- Identify appropriate research topics
- Select and define appropriate research problem and parameters
- Prepare a project proposal (to undertake a project)
- Organize and conduct research (advanced project) in a more appropriate manner
- Write a research report and thesis

CHC6	IC6201 SYNTHETIC ORGANIC CHEMISTRY				Ρ	С		
	3	1	0	4				
OBJECTIVES:								
To im	part							
•	• Knowledge of the increasingly important role played by organic and transition							
metals reagents and catalysts with their corresponding proposed reaction mechanisms.								
Knowledge for rational mechanism-based design of synthetic strategies for								
new and novel organic reactions.								
MODULE I STEREOCHEMISTRY II								

Conformational analysis and reactivity of cyclic and acyclic systems . topicity . prochirality - enantiotopic and diastereotopic atoms, groups and faces . asymmetric synthesis - stereoselective, stereospecific reactions - enantioselective synthesis - optical purity and enantiomeric excess - Cramos rule . Prelogos rule . Fehn Anns model - methods of resolution . kinetic, dynamic kinetic resolution - Sharpless epoxidation

MODULE II	MOLECULAR REARRANGEMENTS
-----------	--------------------------

General mechanistic considerations, nature of migration, migratory aptitude nucleophilic, electrophilic and free radical rearrangements . Wagner-Meerwein, Demyanov, Favorskii, Fritsch-Butternberg - Wiechell, Neber, Hofmann, Curtius, Beckmann, Schmidt, Lossen, Wolff, Baeyer . Villiger, Stevens, Wittig, Chapman, Wallach, Orton, Bamberger, Pummerer and Von Ritchter rearrangements.

MODULE III REAGENTS IN ORGANIC SYNTHESIS 9
--

Synthesis and application of - Diborane, LiAlH₄, NaBH₄, DIBAH, Bu₃SnH, SeO₂, NBS, DCC, PCC, Swern, Dess Martin, DDQ, LDA, Gilmanos reagent, phase transfer catalysts, Wittig, Tebbe, Wilkinsonos catalysts, Palladium and copper catalysts in coupling (Suzuki, Heck), Low valent titanium(McMurry), Co(Salen) complex (Jacobsen), BINAL(H), BINAP, Grubb and Schrock catalyst (Olefin Metathesis).

MODULE IV	MULTISTEP SYNTHESIS

Strategies for synthetic analysis and planning . functional group introduction, removal and interconversion - activating groups . protection and deprotection of hydroxyl, amino, carbonyl and carboxylic acid groups - retrosynthetic analysis, synthons and synthetic equivalent groups - C-C, C=C, C-O bond forming reactions . linear and convergent synthesis - control of stereochemistry . reactive umpolung - analysis and synthesis of a few target molecules.

MODULE V	APPLICATIONS OF ORGANIC SPECTROSCOPY	9	
Structure determination of organic compounds - introduction to NMR spectroscop			

9

intor	rpretation of molecular structure by ¹ H, ¹³ C and Mass spectroscopic techniques.							
inter	pretation of molecular structure by H, C and Mass spectroscopic techniques.							
	L – 45; T-15; Total Hours –60							
REF	ERENCES:							
1.	Jerry March, Advanced Organic Chemistry, 4 th Edition, Wiley-Interscience,							
	New York, 2007.							
2.	Morrison R.T., Boyd R.N. and S. K. Battacharjee Organic Chemistry, 7 th Edition, Pearsons, 2007.							
3.	Lowry T.H. and Richardson K.S., Mechanism and Theory in Organic Chemistry, 2 nd Edition, Harper and Row Publishers, 1981.							
4.	Michael B. Smith and Jerry March, Advanced Organic Chemistry, Reactions, Mechanisms and Structure 7 th Edition, Wiley Intersciences, New York, 2009.							
5.	Finar I.L., Organic Chemistry, Volume II, 5 th Edition, ELBS Longmann Group Ltd., London, 1980.							
6.	Stuart G. Warren, Organic Synthesis: The Disconnection Approach Wiley India, 2009.							
7.	Achesen R.M., Chemistry of Heterocyclic Compounds, Wiley Eastern, 1973.							
8.	Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry, Part A. Structure and Mechanisms, 5 th Edition, Springer, 2007.							
9.	Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry, Part B: Reactions and Synthesis, 5 th Edition, Springer, 2007.							
OUTCOMES:								
The student will								
• acquire the skills for correct stereo chemical assignment and interpretation in								
	the cases of complex organic molecules.							

• be equipped as a more competent synthetic organic chemist due to being capable of correct mechanistic approach and design of a synthesis.

CHC6202	Quantum Chemistry	Т	Ρ	С
01100202	3	1	0	4
OBJECTIVES:				
To make the stu	dent			
″ understar	nd the origin of classical mechanics and the backgroun	d of	quar	ntun
mechanic	S			
″ derive and	l use of Schrodinger equation to simple systems			
" able to co	nstruct the molecular orbital for molecules			
" gain the	basics of quantum statistics and how it is applied to	o sys	stem	S O
chemical				
	concepts symmetry elements and operations, able to as	sign	the p	ooin
group of	molecules			
MODULE I	INTRODUCTION TO QUANTUM CHEMISTRY			9
Review of esse	ntial mathematical concepts. General introduction to	class	sical	an
quantum mecha	nics. Classical mechanics: black body radiation, photo e	electr	ric ef	fec
heat capacity of	solids and inadequacy of classical mechanics. Quantum	n me	echa	nics
historical backgr	ound, principles and postulates. Operators and their pro	pertie	es. E	igeı
value . Eigen fu	nctions.			
MODULE II	SOLUTIONS OF SCHRODINGER EQUATION	N A	ND	9
	APPROXIMATE METHODS			
Schrodinger eq	uation, Discussion of solutions of the Schrodinger eq	uatio	n to	fev
systems: particle atom.	e in a box, the rigid rotor, the harmonic oscillators and	the h	nydro	ogei
Approvimate me	thods: The variation theorem, linear variation principle	. Per	turba	atio

9

9

theory (introductory concept, degenerate and non-degenerate). Application of variation methods to the helium atom. Concept of Hartree Fock/SCF methods.

MODULE III

QUANTUM AND PHOTOCHEMISTRY OF MOLECULES

Born Oppenheimer approximation; VB and MO theory; Applications to H2⁺ and H2 molecules. MO treatment of homo- and hetero nuclear diatomic molecules. Hukel molecular orbital theory and its application to ethylene, butadiene, benzene and cyclic systems.

Photochemistry: Law of photochemistry, Jablonski diagram, quantum yield, excimer and exciplex and quenching, Stern-Volmer relation, Photo induced electron and energy transfer, FRET (concept only); Measurement of fluorescence, phosphorescence and lifetime (introductory concept), chemiluminescence . fluorescence based sensors and imaging applications.

MODULE IV

QUANTUM STATISTICS

Recapitulation of classical statistics and partition function, relationship between partition and thermodynamic functions, thermodynamic probability, derive the expression for translational, rotational, vibrational and electronic partition functions and its simple application to mono atomic gases (ortho-para hydrogen) and solids, Compare and distinguish between Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Applications of Bose-Einstein and Fermi-Dirac statistics.

MODULE V

MOLECULAR SYMMETRY AND GROUP THEORY

Symmetry elements and symmetry operations . types of groups- group postulates - classification of point groups- Schoenflies symbol . matrix representation of symmetry operations and point groups, representation of point group, reducible and irreducible representations, the great orthogonal theorem . character table, construction of character table for C_{2v} and C_{3v} groups- symmetry adopted linear combinations (SALCs), assignments of point groups and geometry of various molecules-applications of group theory.

			Γ	
				L – 45; T – 15; Total Hours –60
REFE	RENCES:			<u> </u>
1.	McQuarrie D	A., Quantum C	Chemist	ry, First Edition, University Science Books,
	Mill Valley, C	alifornia, 2003.		
2.	Levine I.N., C	uantum Chemi	stry, Fil	th Edition, Pearson Education, 2000.
3.	Hanna M.W	., Quantum M	lechani	cs in Chemistry, Third Edition, Addition
	Wesley, Lond	lon, 1981.		
4.	Prasad R. K	., Quantum C	hemistr	ry, Fourth Edition, New Age International
	Publishers, 2	008.		
5.	Chandra A.	K., Introducto	ry to C	Quantum Chemistry, Fourth Edition, Tata
	McGraw Hill	Education Priva	te Ltd.	
6.	C.L. Tien., J.	H.Lienhard., St	atistical	thermodynamics, Revised Printing Edition,
	Hemisphere	Publishing Corp	oration	, Oxford.
7.	N.M. Laurence	leau, Statistical	Therm	odynamics, fundamentals and applications,
	2005, Oxford	University Pres	ss, Oxfo	ord.
8.	Albert Cotton	F., Chemical	Applica	tions of Group Theory, Third Edition, Wiley
	India Pvt Ltd.			
9.	P.K.Bhattach	arya, Group t	heory	and its Chemical Applications, 2 nd Edn,
	Himalaya Pul	olications, India	.2012	
10	. A. Vincent.	Molecular S	Symmet	ry and Group theory, A programmed
			•	s, 2^{nd} Edition, Wiley, 2001
				, 2 Eadon, Whoy, 2001
Ουτα	OMES:			
ine s	tudent will gair			
	•			/ of atoms and molecules
•		-	mistry a	and how to apply this knowledge to atomic
	and molecula			
•	Able to und	erstand clearly	the m	nicroscopic and inner details of chemical

reactions in chemistry point of view

- In depth knowledge and understanding of photochemical reactions
- Assign the symmetry elements and point group of molecules/ion/complexes
- Indentify the symmetry in molecules and explain the character table of $C_{2\nu}$ and $C_{3\nu}$ point groups

CHC6203	CO-ORDINATION CHEMISTRY	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES:	<u>.</u>				
To make the stud	ents conversant with the				
 Non 	nenclature and isomerism of coordination compound	ls			
• Bon	ding theories of coordination compounds				
• Spe	ctra of coordination compounds				
 Mag 	netic properties of coordination compounds				
• Vari	ous reactions of coordination compounds				
Che	mistry of lanthanides and actinides				
MODULE I	COORDINATION COMPOUNDS				9
Nomenclature, s	tructure and stability . geometry and isomer	rism	-	abso	olute
configuration . C	ORD and CD spectra - stability of complexes .	th	ermo	dyna	amic
aspects, successi	ve and overall formation constants . experimental r	neth	ods.		
MODULE II	THEORIES OF METAL- LIGAND BOND				9
Valence bond the	ory. hybridization - crystal field theory. crystal field	d sp	litting	g, cr	ystal
field stabilization	energy . thermodynamic and structural implicati	ons	, Jał	n T	eller
effects, ligand fiel	d theory - molecular orbital theory . pi bonding.				
MODULE III	SPECTRA OF CO-ORDINATION COMPOUND	S			9
Free ion terms, t	ransformation in crystal field, energy diagrams in	wea	k an	d st	rong

field cases . Tanabe . Sugano diagrams, selection rules - magnetic properties . Van Vleck equation, magnetic susceptibility . experimental methods - ESR spectra of transition metal ions.

REACTIONS OF CO-ORDINATION COMPOUNDS	9
	REACTIONS OF CO-ORDINATION COMPOUNDS

Inert and labile complexes - substitution reactions in square-planar and octahedral complexes - electron transfer reactions - photochemical reactions.

MODULE V COMPARATIVE CHEMISTRY OF OXIDATION STATES OF d AND f BLOCK ELEMENTS

Lanthanides-occurrence, isolation, lanthanide contraction, oxidation states, spectral and magnetic properties, co-ordination complexes, actinides, comparative chemistry with transition metals and lanthanides.

L – 45; Total Hours –45

REFERENCES:

- 1. Cotton F.A., Wikinson G. and Gaus P., Basic Inorganic Chemistry, 3rd Edition, John Wiley and Sons, 2003.
- 2. Shriver D.F. and Atkins P.W., Inorganic Chemistry, 3rd Edition, (ELBS), Oxford University Press, Oxford, 2004.
- Huheey J.E., Keiter E.A. and Keiter R.L., Inorganic Chemistry, 4th Edition, Addison Wesley Publication, London, 1993.
- 4. Cotton F.A., Wikinson G., Murillo C.A. and Bochmann M., Advanced Inorganic Chemistry, 6th Edition, John Wiley and Sons, New York, 2003.
- 5. Jolly W.L., Modern Inorganic Chemistry, 2nd Edition, McGraw Hill Inc., 1991.
- 6. Meissler G.L. and Tarr D.A., Inorganic Chemistry, 3rd Edition, Pearson Education, Singapore, 2004.

OUTCOMES:

Students will be able to

- Write the nomenclature of a coordination complex
- Find the number of isomers possible for coordination compound
- illustrate an understanding of the principles of theories of metal-ligand bond.
- demonstrate an understanding of spectra of coordination compounds.
- analyze the spectra of transition metal ions.
- analyze Tanabe . Sugano diagrams.
- interpret the stability of complexes.
- understand the substitution reactions in transition metal complexes.
- demonstrate an understanding of chemistry of ±dqand ±qblock elements.
- analyze and compare the transition metals and lanthanides

CHC6204	CHC6204 SYNTHETIC ORGANIC CHEMISTRY PRACTICAL		L	Т	Ρ	С		
			0	0	4	2		
OBJECTIVES:							<u> </u>	
To make the stud	ents							
chromatog	 Identify organic compounds by TLC technique and purify them by column chromatography. expertise in multi step synthesis of organic compounds. 							
List of Exp	periments							
	Identification and purification of organic compounds by thin layer and column chromatographic techniques.							
	Single step and multistep synthesis of organic compounds - isolation and characterization of the products by various spectroscopic techniques.							
			P - 6	0; Tot	al Ho	ours	-60	

REF	ERENCES:					
1.	A.I. Vogel, Vogel's Textbook of Practical Organic Chemistry (4th Edition),					
	Longmann group, 2008.					
2.	N.S. Gnanapragasam, G. Ramamurthy, Organic Chemistry . Lab manual, S.					
	Viswanathan Co. Pvt. Ltd., 1998.					
3.	V.K. Ahluwalia S Dhingra Comprehensive Practical Organic Chemistry:					
	Qualitative Analysis, University Press, 2000.					
4.	Robert M. Silverstein, Francis X. Webster, David Kiemle, Spectrometric					
	Identification of Organic Compounds, 7 th Edition, Wiley, 2005.					
	Kemp W., Organic Spectroscopy, 3 rd Edition, ELBS, McMillan, London, 1991.					
Ουτ	OUTCOMES:					
The	students will be able to					
	 Independently perform multi step organic synthesis. 					
	• Identify the synthesized compounds by TLC and purify it by column					
	chromatography.					

CHC6205	INORGANIC CHEMISTRY PRACTICAL-II	L	Т	Ρ	С
		0	0	4	2
		•			

OBJECTIVES:

The students will be trained to

- estimate the metal components present in alloys
- prepare different complexes
- characterize the complexes by spectral techniques
- synthesis of green reagents

List	of Exp	eriments	6							
1.	Estin	nation of	allovs by c	Iravim	etrv a	nd titrimetry	bras	s (Cu & Zn),	bronze	e (Cu &
			nickel (Fe		- ,	j		- (,,		
2.	Com	plex pre	eparation	and	char	acterisation	by	UV-Visible	and	FT-IR
			technique				,			
	(i)	Prepara	ation of 1-a	acetyl	ferroc	ene				
	(ii)	(ii) Preparation of bis(acetylacetanato)copper(II)								
	(iii)	Prepara	ation of tris	s(acety	lacet	anato)iron(II	I)			
	(iv)	Prepara	ation of tris	s(acety	lacet	anato)mang	anese	e(III)		
	(v) Solvent free and one pot synthesis of phthalocyanine complex of copper(II)									
	 (vi) Synthesis of tetrabutyl ammonium tribromide (TBATBP) - A green reagent and its application 									
								P - 60; Tot	tal Hou	irs –60
REF	ERENC	CES:								
1.	Mono	ograph o	n Green	Chemi	istry L	_aboratory	Exper	iments, Gre	en Che	emistry
	Task	Force C	ommittee,	Depar	tment	of Science	and t	echnology, Ir	ndia.	
2.								ihir K. Chau		
				A Mo	onogra	aph, I K Inte	rnatio	onal Publishi	ng Hou	use; 1 st
2		on, 2012.					Davia			
3.				•		C. Thomas Edition, Prei		l and J. Ba Hall 2000	imes, \	vogers
4.				•	•			Analysis; 3 ^{rc}	¹ Editio	n. The
						nnai, 1974.			23110	,
5.	Mukł		ay R and (• •			l Pra	ctical Chemi	stry, Bo	ooks &
6.				dbook	of A	nalytical Inc	rgani	c Chemistry	, Intern	ational

Scientific Publishing Academy, India, 2005.

OUTCOMES:

The students will be able to

- estimate the various metal ions present in alloys by titrimetry and gravimetry
- prepare different complexes
- characterize the complexes by spectral techniques
- synthesis green reagents

CHC6206	PHYSICAL CHEMISTRY PRACTICAL- II	L	Т	Ρ	С		
		0	0	4	2		
OBJECTIVES:							
To make the stud	dents						
• expertise	in the applied concepts of volumetric titrations	, eleo	ctroc	hem	istry,		
phase equilibrium, adsorption, etc.							
draw struct	ctures and graph using softwares and prepare repo	rts					
List of Ex	periments						
1. EMF mea	surement						
2. Potentiom	etric titrations						
3. Acid base	titration by pH metry						
4. Redox and	d precipitation titrations						
5. Determina	tion of CST in phenol-water system						
6. Determina	tion of activity coefficients of an electrolyte at diffe	rent n	nolali	ities			

B.S. Abdur Rahman Crescent Institute of Science & Technology

7. Determination of sucrose content in cane sugar by polarimetry

8. Determination of DEp of a redox system by cyclic voltametry

- 9. Verification of Freundlich isotherm Adsorption of acetic acid, oxalic acid on activated carbon
- 10. Experiments on electroplating and electroless plating.
- 11.Uses of computer packages: Microsoft (word, excel and powerpoint), origin, chemsketch and chemdraw

P - 60; Total Hours -60

REFERENCES:

- 1. V.D. Athawale, Experimental Physical Chemistry, New Age International, 2007.
- 2. B.D. Khosla, Senior Practical Physical Chemistry, R. Chand and Co., New Delhi, 2007.
- B. Viswanathan and P.S. Raghavan, Practical Physical Chemistry, Viva Books Pvt. Ltd., 2005.
- 4. D.R. Satiya, Practical Chemistry, 2nd Edition, Allied Publishers, Madras, 1991.
- 5. D.P. Shoemaker and C.W. Garland, Experiments in Physical Chemistry, McGraw Hill, London, 1962.

OUTCOMES:

The students will be able to

- determine the EMF of any cell
- measure the adsorption capacity of various materials
- draw the phase diagram for 2 and 3 component systems and analyze it
- draw chemical structures using chemsketch and chemdraw
- draw graphs using excel and origin software
- prepare the final dissertation report using MS word by themselves

CHC7101	ADVANCED ORGANIC CHEMISTRY	L	Т	P	С				
		3	0		3				
		3	0	0	3				
OBJECTIVES:									
To make the stude	ents conversant with								
 the structur 	e and synthesis of various natural compounds.								
 all major type 	bes of organic name reaction with mechanisms.								
 all types of 	pericyclic and photochemicals reactions with its ap	plica	ations	3.					
MODULE I	CARBOHYDRATES, PROTEINS, NUCLEIC AC		3		9				
Monosaccharides	. classification . cyclic structure of mon	iosa	iccha	ride	S.				
mutarotation . ep	imers . glycals - glycosides . Ferrier rearrangem	ent	. an	ome	ers .				
Hudson rules .	derivatives of monosaccharides . Vitamin C -	disa	acch	aride	es.				
trisaccharides .	oolysaccharides . nucleic acids : amino acids .	cla	assifi	catio	on.				
peptides - proteins	. classification - structure.								
MODULE II	NAME REACTIONS				9				
Stork enamine, B	irch reduction - Aldol, Claisen, Benzoin, Stobbe	cor	ndens	satio	ns -				
	Mannich reaction, Wittig, Robinson annulation, Died				•				
Koenigs-Knorr, P	olonowski, Hofmann-Loffler, Reformatsky, Darz	enq	β, S	imm	ons-				
Smith, Gatterman	n-Koch, Mitsunobu reaction, Buchwald and Hartwig	•							
MODULE III	ORGANIC PHOTOCHEMISTRY				9				
	Thermal vs photochemical reactions . n-pi* and pi-pi* transitions - allowed and								
	ns . Jablonski Diagram - fluorescence and pho								
	n and intersystem crossing sensitization, quench	U		•					
	chemical reaction of ketones . Norrish type I and								
	tions - photochemical oxidation and reduction	•							
reactions of olefine	s - cis-trans isomerisation, di-pi-methane and Fries	rear	rrang	eme	nts.				

MODULE IV PERICYCLIC REACTIONS

Definition . electrocyclic, cycloaddition, sigmatropic, chelotropic and ene reactions -Woodward-Hoffmann rules . Frontier orbital, Mobius-Huckel and orbital symmetry correlation approaches - Stereospecificity and regiospecificity of pericyclic reactions . pericyclic reactions in organic synthesis . Diels-Alder reaction, 1,3-dipolar cycloaddition, Claisen, Cope, Aza cope.

MODULE V HETEROCYCLES, ALKALOIDS, TERPENOIDS AND 9 STEROIDS

Nomenclature of condensed heterocycles - Synthesis and reactivity of indoles, quinolines, isoquinolines, benzopyran, chromones, coumarins - Alkaloids . classification - synthesis of cocaine and atropine - terpenoids - Classification . isoprene rule . stereochemistry and synthesis of car-3-ene, menthol, zingiberene . Steroids . classification . structure and stereochemistry of cholesterol, synthesis of cortisone, estrone.

L – 45; Total Hours –45	L -	- 45:	Total	Hours	-45
-------------------------	-----	-------	-------	-------	-----

REFERENCES:

- Jerry March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 4th Edition, Wiley Inter Science, New York, 2007.
- 2. Fleming I., Frontier Orbital and Organic Chemical Reactions, Wiley, 1976.
- Graham Solomons T.W., Organic Chemistry, Volume I and II, 5th Edition, John Wiley and Sons, New York, 1992.
- 4. Finar I.L., Organic Chemistry, Volume II, 5th Edition, ELBS Longman Group Ltd., London, 1975.
- 5. Sankararaman S., Pericyclic reactions . a Textbook: Reactions, Applications and Theory, Wiley-VCH, 2005.
- Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry, Part
 A. Structure and Mechanisms, 5th Edition, Springer, 2007.
- Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry, Part B: Reactions and Synthesis, 5th Edition, Springer, 2007.

OUTCOMES:

The student will

- acquire the skill of relating all the biomolecules /natural products and propose synthetic routes.
- be skilled in photochemical and pericyclic reaction mechanism.

CHC7102	PHYSICAL CHEMISTRY	L	Т	Р	С				
		3	0	0	3				
OBJECTIVES:									
To make the stud	ent learn								
• the basic a	spects of both experimental and theoretical chemica	al ki	netic	S					
derive rate expressions for acid-base catalytic systems and enzyme catalysed									
systems									
Different ty	pe of phase equilibria								
write mech	anisms for reactions catalysed by transition metal c	omp	lexe	S					
relate the of	relate the catalytic activity of heterogeneous catalysts to their physicochemical								
properties	properties								
learn the p	learn the principle and instrumentation of surface characterization techniques								
MODULE I	KINETICS				9				
Methods of deterr	nining rate laws . reversible, consecutive and comp	petir	ig rea	actio	ns .				
Vant Hoffoş rule,	Collision theory, Bodenstein's Theory, theory of a	abso	olute	read	ction				
rates . transmis	sion coefficient . thermodynamic formulation of	rea	ction	rate	es.				
kinetics . classica	al treatment . principle of microscopic reversibility	' - p	hoto	chen	nical				
kinetics, . fast	reactions . luminescence and energy transformation	atio	ns .	stud	y of				

kinetics by stopped flow techniques . flash photolysis.							
MODULE II	MECHANISM OF SO	LUTION PHASE REACTION	9				
Lindemanos theory	. Hinshelwood, Kasse	el and Slater treatments, reaction rate	s in				
solution . effect of	dielectric constant ar	d ionic strength . kinetic isotope effe	ct.				
linear free energy relationships . Hammett equation . Taft equation							
MODULE III	PHASE EQUILBRIA		9				
Two component sys	stems . classification .	solid-gas (dehydration and rehydration	n of				
CuSO ₄ , 5H ₂ O), soli	d-liquid systems . ber	zene-picric acid system, salt-water sys	stem				
fractional distillation	. three component sys	stems involving liquid-liquid equilibria					
MODULE IV	CATALYSIS		9				
Acid-base catalysis	. general scheme . A	rrhenius complex. Vant Hoff s compl	эх.				
specific and general	catalysis . catalytic co	onstants. Bronsted relationship. Ham	mett				
acidity functions. m	nechanism of acid-base	e catalysed reaction . catalysis by trans	ition				
metal ions and their	complexes . supporte	d transition metal complexes as catalys	sts.				
enzyme catalysis.	theory and applications						
MODULE V	SURFACE PHENO	MENA AND HETEROGENEOUS	9				
	CATALYSIS						
Diffusion . adsorp	otion . surface read	tion . various adsorption isotherm	s.				
determination of su	irface area . pore vo	lume and pore size . thermodynamic	s of				
interfaces . solid ca	talysts. metal-metal o	oxides . geometric factor . electronic fa	actor				
- zeolites . phase the	ransfer catalysis . coll	oidal electrolytes . reactions on surfac	es.				
surface characterization techniques . ESCA, AES and SIMS.							
		L – 45; Total Hours	-45				
REFERENCES: 1. Laidler K.J., Chemical Kinetics, Harper and Row, New Delhi, 1987.							
,		. ,					
Rajaram J. and Kuriacose J.C., Kinetics and Mechanism of Chemical 2. Transformation, Mcmillan India Ltd., 1993. Kuriacose J.C. and Rajaram J., Thermodynamics for Students of Chemistry. 3rd 3. Edition, Shoban Lal Nagin Chand and Co., 1999. 4. Nash L.K. and Addison, Elements of Statistical Thermodynamics, Wiley Publication Co., 1971. 5. Gupta M.C., Statistical Thermodynamics, Wiley Eastern, New Delhi, 1990. 6. Sears F.W. and Salinger G.L., Thermodynamics, Kinetic theory and Statistical Thermodynamics, 3rd Edition, Narosa Publishing House, New Delhi, 1998. Rohatgi, Mukharjii K.K., Fundamentals of Photochemistry- Wiley Eastern. 7. **OUTCOMES:** The student will be acquainted with differential rate laws, integrated rate laws, temperature dependence of reaction rates,

- Derivation of rate law for the complex reactions such as parallel ,reversible and consecutive reactions
- the knowledge of phase equilibria for various systems
- different types of catalysts and catalyzed reactions
- Basic analytical techniques to analyze the catalyst

CHC7103	ADVANCED INORGANIC CHEMISTRY	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES	:				
	: tudent conversant with the				
To make the s	-				

 role of metals and non-metals inside the living organisms molecular polyhedra in inorganic solids inorganic solid state basics of photochemistry **ORGANOMETALLIC COMPOUNDS** 9 MODULE I 18 electron rule: metal carbonyls, metal nitrosyls, metal alkyl and aryl complexes preparation, structure, bonding, stereochemical non-rigidity. METAL CARBON PI COMPLEXES 9 MODULE II Metal-alkene, alkyne and allyl complexes, cyclopentadiene and benzene complexes. preparation, structure and bonding - catalysis by organometallic compounds hydrogenation, hydroformylation, stereoregular polymerization. Wacker process. **BIO-INORGANIC CHEMISTRY** 9 MODULE III Metals and non-metals in biological systems - metal ion transport - oxygen carriers . haemoglobin, myoglobin - metallo-enzymes . carboxypeptidase-A, carbonic anhydrase, vitamin B₁₂, nitrogenase - electron transfer and redox systems photosynthesis. BONDING AND MOLECULAR POLYHEDRA 9 IN MODULE IV **INORGANIC SOLIDS** Boranes, borazines, silicates, phosphorous-nitrogen, sulphur-nitrogen compounds, metal clusters - inert gas compounds. INORGANIC SOLID STATE AND PHOTOCHEMISTRY 9 MODULE V Preparation of non-molecular solids - band theory of solids - defects and nonstoichiometry, electrical and magnetic properties, superconductivity, amorphous solids, nonsolids - photochemistry . photophysical processes, spontaneous and stimulated emission of radiation, chemical actinometry, solar energy conversion and applications.

	L – 45; Total Hours –45
--	-------------------------

REFERENCES:

- Cotton F.A., Wilkinson G. and Gaus P., Basic Inorganic Chemistry, 3rd Edition, John Wiley and Sons, 2003.
- Shriver D.F., Atkins P.W. and Langford C.H., Inorganic Chemistry, 2nd Edition, Oxford University Press (ELBS), Oxford, 1994.
- Huheey J.E., Keiter E.A. and Keiter R.L., Inorganic Chemistry, 4th Edition, Addison Wesley Publication, London, 1993.
- 4. Cotton F.A., Wilkinson G., Murillo C.A., Bochmann M., Advanced Inorganic Chemistry, 6th Edition, John Wiley and Sons, New York, 2003.
- 5. Jolly W.L., Modern Inorganic Chemistry, 2nd Edition, McGraw-Hill, Inc., 1991.

OUTCOMES:

Students will be able to

- demonstrate basic principles of organometallic compounds.
- illustrate reactivity and stereochemistry of organometallic compounds.
- demonstrate the basic principles of bioinorganic chemistry.
- demonstrate the bonding in inorganic polyhedral solids.
- illustrate the basic principles of inorganic solid state.
- learn the basic principles of photochemistry
- illustrate the basic principles of band theory of solids.

CHCY001	GREEN CHEMISTRY	L	Т	Ρ	С
		3	0	2	4

OBJECTIVES:

To make the students conversant with the

- principle and advantages of green chemistry.
- principle and uses of microwave as a green technology.
- Applications of ionic liquids and phase transfer catalyst
- Application of supported catalysts and bio catalyst for green synthesis various alternative reagents and chemicals for green synthesis.

MODULE I	INTRODUCTION TO GREEN CHEMISTRY	9
Green chemistry-rel	evance and goals, Anastasqtwelve principles of green chemis	stry -
Tools of green cher	mistry: alternative starting materials, reagents, catalysts, solv	rents
and processes with	suitable examples.	
MODULE II	MICROWAVE ASSISTED ORGANIC SYNTHESIS	9
	(MAOS)	
Microwave activation	on . advantage of microwave exposure . specific effect	s of
microwave . Neat reactions . solid supports reactions _ Functional grou		
transformations . condensations reactions . oxidations . reductions reactions . mu		
component reactions.		
MODULE III	IONIC LIQUIDS AND PHASE TRANSFER CATALYSIS	9

Introduction . synthesis of ionic liquids . physical properties . applications in alkylation . hydroformylations . epoxidations . synthesis of ethers . Friedel-craft reactions . Diels-Alder reactions . Knoevenegal condensations . Wittig reactions . Phase transfer catalyst - Synthesis . applications.

MODULE IV	SUPPORTED CATALYSTS AND BIO-CATALYSTS FOR	9
	GREEN CHEMISTRY	
Introduction . the	concept of atom economy . supported metal catalyst	ts.
mesoporous silicas	. the use of Biocatalysts for green chemistry - modified	bio

catalysts . fermentations and biotransformations . fine chemicals by microbial fermentations . vitamins and amino acids . Bakeros yeast mediated biotransformations . Bio-catalyst mediated Baeyer-Villiger reactions . Microbial polyester synthesis.

MODULE VALTERNATIVESYNTHESIS,REAGENTSAND9REACTION CONDITIONS

Photochemical alternative to Friedel-crafts reactions - Dimethyl carbonate as a methylating agent . the design and applications of green oxidants . super critical carbon dioxide for synthetic chemistry.

PRACTICALS

1. Synthesis of organic compounds by green methods.

2. Synthesis of metal complexes by green methods.

L – 45;	P – 30;	Total	Hours	-60
---------	---------	-------	-------	-----

REFERENCES:

- Green Chemistry . Environmentally benign reactions . V. K. Ahluwalia. Ane Books India (Publisher). (2006).
- Green Chemistry . Designing Chemistry for the Environment . edited by Paul T. Anastas & Tracy C. Williamson. Second Edition, (1998).
- Green Chemistry . Frontiers in benign chemical synthesis and processesedited by Paul T. Anastas & Tracy C. Williamson. Oxford University Press, (1998).
- Green Chemistry . Environment friendly alternatives- edited by Rashmi Sanghi & M. M. Srivastava, Narora Publishing House, (2003).

OUTCOMES:

The students will demonstrate the

• principles and advantages of green chemistry.

- principles and uses of microwave as a green technology.
- Applications of ionic liquids and phase transfer catalyst
- Supported catalysts and bio catalyst for green synthesis
- various alternative reagents and chemicals for green synthesis.

CHYC002	MOLECULAR SPECTROSCOPY	L	Т	Ρ	С
		3	1	0	4
		•			<u> </u>

OBJECTIVES:

To make the students

- " learn molecular spectroscopy as an important tool to understanding molecular structure and its characteristics.
- " acquire a basic idea of different electromagnetic regions and instrumentation of various modern spectrometers
- ["] demonstrate an understanding of the rotational, vibrational and electronic spectroscopy of diatomic and polyatomic molecules
- acquire the skill to determine the functional groups present in unknown molecules using vibrational (IR) spectra and to calculate maximum (maximum) absorption of molecules in Electronic (UV-Visible) region using Woodward-Fischer rule
- " learn the magnetic properties of electrons and nucleus of atoms and free radicals, using spin angular momentum with the help of nuclear magnetic resonance and electron spin resonance spectra
- " identify the unknown molecular formula of fragmented metastable ions of organic Compounds
- " learn hyperfine interactions of nuclei present in a molecule

MODULE I	ELECTROMAGNETIC RADIATION AND ROTATIONAL SPECTROSCOPY	9
Characterization of	electromagnetic radiation . regions of the spectrum . b	asic

elements of practical spectroscopy . enhancement of spectra . Applications of group theory . Microwave spectroscopy . rotational spectra of molecules . applications.

MODULE II	INFRA-RED & RAMAN SPECTROSCOPY	9
		Í

Infra-red spectroscopy . harmonic and unharmonic vibrations . dissociation energy of diatomics . vibrating rotator . PQR branches in IR spectra . Fermi resonance . Raman spectroscopy . mutual exclusion principle.

	·	
MODULE III	ELECTRONIC SPECTROSCOPY	9

Electronic spectra of diatomic molecules: Born Oppenheimer approximation, Franck-Condon principle, selection rules, intensity of electronic transition, vibronic coupling, types of electronic transition - UV-Visible spectroscopy . solvent effects . Woodward-Fischer rule to conjugated dienes.

MODULE IV	SPIN RESONANCE SPECTROSCOPY	9

Proton magnetic resonance spectroscopy . relaxation processes . chemical shift . coupling . ¹³C NMR spectra . Electron spin resonance spectroscopy . hyperfine interactions.

MODULE V MASS	S SPECTROMETRY 9
---------------	------------------

Reactions of ions in gas phase . effect of isotopes . nitrogen rule . determination of molecular formula . fragmentations and rearrangements . metastable ions . fragmentation of organic compounds. Application of Mass spectroscopy with GC.

	L – 45; T – 15; Total Hours –60

REFERENCES:

- 1. Banwell C.N. and McCash E.M., Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw Hill, New Delhi, 1995.
- 2. Kemp W., Organic Spectroscopy, 3rd Edition, ELBS, McMillan, London, 1991.
- 3. Drago R., Physical Methods for Chemists, Saunders, Philadelphia, 1992.

- 4. Williams D.H. and Fleming I., Spectroscopic Methods in Organic Chemistry, 4th Edition, McGraw Hill, New York, 1989.
- 5. Pasto D., Johnson C. and Miller M., Experiments and Techniques in Organic Chemistry Prentice-Hall Inc., New Jersey, 1992.
- 6. Pavia D.L., Lampman G.M. and Kriz G.S., Introduction to Spectroscopy, 3rd Edition, Brooks/Cole Publication, Singapore, 2001.
- 7. Robert M. Silverstein, Francis X. Webster, David Kiemle, Spectrometric Identification of Organic Compounds, 7th Edition, Wiley, 2005.

OUTCOMES:

The students will be able to

" gain the theoretical knowledge of the various spectroscopic methods on the basis of the examples from the science and industry.

^{*m*} become familiar with modern spectrometers and methods, which are applied in industrial and scientific laboratories in the field of synthesis and structural determination.

CHCY003	PHOTOPHYSICS AND PHOTOCHEMISTRY		Т	Ρ	С
		3	0	0	3
		<u> </u>			
OBJECTIVES:					

To make the students conversant with the

- basic laws of photophysics and photochemistry.
- principle and instrumentation of different types of spectrofluorimeter.
- Basics of fluorescence spectroscopy
- Different types of photochemical reactions
- Applications of solar energy materials.

MODULE I	BASICS OF PHOTOPHYSICS AND PHOTOCHEMISTRY			
Basic laws, Einstei	n Laws . absorption, Fundamentals of absorption- absorption			
coefficients, electronic transitions. Excited state energy relaxations . Jablonski				
diagram, Radiative and non-radiative relaxations, fluorescence, phosphorescence,				

Lifetime and quantum yield, Stokes Shift, Kashacs rule.

MODULE II	INSTRUMENTATION TECHNIQUES	9

Spectrophotometer, light Sources, photochemical quauntum yield and intensity measurements, detectors-PMT, Diode-array. Spectrofluorimeter . Steady state and Time-resolved fluorimeter. Study using time resolved techniques . pump-probe methods and instrumentation: Lasers-nanosecond, picosecond and femtosecond. Measurement of . Triplet quantum yield and Time resolved absorption spectrum. Fluorescence standards . lifetime and quantum yield.

MOD	111	F	ш

FLUORESCENCE SPECTROSCOPY

Quenching of fluorescence, fluorescence lifetime, fluorescence quantum yield-method of determination, Rotation diffusion, Time resolved anisotropy, environmental influence on fluorescence properties and photo-bleaching. Solvent effect-Lippert equation, excited state acidity constants, Fluorescence analysis of excited state reactions. Ultrafast solvation dynamics.

MODULE IV	PHOTOCHEMICAL REACTIONS	9
<u> </u>		<u> </u>
Norrish type reaction	ons. Paterno-Büchi Reaction. Quenching by excitation trai	nsfer
(Förster and Dexter), electron transfer, excited state complex formation, heavy at	toms
· ·		
and paramagnetic e	effects, Proton transfer, addition reactions, elimination react	ions,

photoisomerisation, photosensitisation, Distance dependence of electron transfer (superexchange). Electron transfer to metals and semiconductors.

MODULE V	APPLICATIONS: SOLAR ENERGY MATERIALS	
Photovoltaic cells .	l 1st,2nd, 3rd generation cells - Organic Solar Cells-Single La	ayer,
Double layer, Bulk	heterojunction, DSSC, Tandem structured . Fabrication,	Key

9

Processes and issues . Materials . Low molecular weight . Polymeric . Donoracceptor polymeric systems. Devices- Characteristics. L – 45; Total Hours –45 **REFERENCES:** 1. Principles of Fluorescence Spectroscopy by Joesph R. Lakowicz 2. Fundamentals of photochemistry by k. k. Rohatgi-Mukherjee 3. Modern molecular Photochemistry of Organic molecules by N. J. Turro **OUTCOMES:** After completing the course the student should be able to describe and explain common photochemical and photophysical processes and mechanisms with suitable theoretical models, and apply established experimental methods for the investigation of these processes describe the interaction of excited states with their surroundings and analyse photoinduced electron transfer and excitation energy transfer with quantitative models · describe the structure and function of photosynthetic reaction centres, and explain the function of photosynthetic antenna systems describe photoinduced processes in semiconductors and at moleculesemiconductor interfaces, and explain how these can be used for photophysical energy conversion and in photocatalysis

• describe and explain the impact and applications of photochemistry

CHCY004	PHOTOCHEMISTRY		Т	Ρ	С
		3	0	0	3

OBJECTIVES:

To make the students conversant with the

- Principles and concepts of photochemistry.
- Measurement of fluorescence and phosphorescence
- Different types of photochemical reactions
- Different types of photochemical reactions
- Applications of solar energy materials.

MODULE I PRINCIPLES AND CONCEPTS

An overview of: Laws of photochemistry, Beer-Lambert law, electronic energy levels, atomic and molecular term symbols, singlet-triplet state, intensity and strength of electronic transition, selection rules for electronic transition, Jablonski diagram and photophysical processes, Franck-Condon principle.

Excited state lifetime, steady state and time resolved emission, factors affecting excited state energy: solvent effect, TICT.

Excited state kinetics, quantum yield expressions, excimer and exciplex, kinetics of luminescence quenching: static and dynamic, Stern-Volmer analysis, deviation from Stern-Volmer kinetics. Photoinduced electron transfer rates, free energy dependence of electron transfer on rate, Photoinduced energy transfer, FRET, rate and efficiency calculation of FRET.

MODULE II	Ν

METHODS

9

9

Measurement of fluorescence and phosphorescence and lifetimes. Introduction to time-resolved techniques for absorption and emission measurements, detection and kinetics of reactive intermediates. Examples of low temperature matrix isolation of reactive intermediates.

MODULE III	REACTIONS	9

Photochemistry of alkene, cis-trans isomerization, photocycloaddition reactions of alkene, photochemical electrocyclic and sigmatropic reactions, di-pi-methane rearrangment, electron transfer mediated reactions of alkene. Photochemistry of carbonyl compounds, Norrish type I and type II reactions, enone and dienone cycloadditions. Photochemistry of aromatic systems, electron transfer and nucleophilic substitution reactions. Photochemistry of nitro, azo and diazo compounds. Photochemistry involving molecular oxygen, generation and reactions of singlet oxygen. Photo-fragmentation reactions (Barton, Hofmann-Loffler-Freytag)

MODULE IV

REACTIONS IN AROMATIC COMPOUNDS

9

9

Photochemistry of aromatic systems, electron transfer and nucleophilic substitution reactions. Photochemistry of nitro, azo and diazo compounds. Photochemistry involving molecular oxygen, generation and reactions of singlet oxygen. Photo-fragmentation reactions (Barton, Hofmann-Loffler-Freytag)

MODULE V

APPLICATIONS

Fluorescence based sensors . examples of molecular and supramolecular systems. Conversion of solar energy to chemical and other forms of energies, solar photovoltaic cell, basic principle and design of the cell.

L – 45; Total Hours –45

REFERENCES:

- 1. Fundamental of Photochemistry, K. K. Rohatgi-Mukherjee, New Age International (P) Ltd., New Delhi, 1986.
- 2. Principles of Fluorescence Spectroscopy, 3rd Ed., J. R. Lakowicz, Springer, New York, 2006.
- 3. Fundamentals of Photoinduced Electron Transfer, G. J. Kavarnos, VCH publishers Inc., New York, 1993.
- 4. Molecular Fluorescence: Principles and Applications, B. Valeur, Wiley-VCH Verlag GmbH, Weinheim, 2002.

- 5. Modern Molecular Photochemistry of Organic Molecules, N. J. Turro, V. Ramamurthy, J. C. Scaiano, University Science, Books, CA, 2010.
- 6. Photochemical Synthesis, I. Ninomiya, T. Naito, Academic Press, New York, 1989.

OUTCOMES:

To make the students acquainted with the

- Principles and concepts of photochemistry.
- Measurement of fluorescence and phosphorescence
- Different types of photochemical reactions
- Different types of photochemical reactions
- Applications of solar energy materials.

CHCY005	BIOCHEMIS	TRY		L	Т	Ρ	С
			·	3	0	2	4
OBJECTIVE	S:						
The student a	re trained about						
Mecha	nism of enzymes a	ind coenzymes.					
Carbo	nydrate metabolism	ı					
 Lipid n 	netabolism and bio	logical oxidation.					
Bioche	mistry of amino ac	ids					
Biochemistry of proteins							
MODULE I	ENZYMES	AND COENZYMES					9
Enzymes: Nomenclature, enzymes-kinetics and mechanism of action, mechanism of							
inhibition of enzymes and isoenzymes in chemical diagnosis. Co-enzymes: Vitamins							

as co-enzymes and their significance - Metals as co-enzymes and their significance. CARBOHYDRATE METABOLISM 9 MODULE II Glycolysis, gluconeogenesis and glycogenolysis - metabolism of galactose and galactosemia - role of sugar nucleotides in biosynthesis and pentose phosphate pathway - citric acid cycle, significance, reactions and energetics of the cycle. LIPID METABOLISM AND BIOLOGICAL OXIDATION 9 MODULE III Oxidation of fatty acids-oxidation and energetics, biosynthesis of ketone bodies and their utilization, biosynthesis of saturated and unsaturated fatty acids, regulation of lipid metabolism, essential fatty acids. The respiratory chain, its role in energy capture and control, energetics of oxidative phosphorylation, mechanism of oxidative phosphorylation. **BIOCHEMISTRY OF AMINOACIDS** 9 MODULE IV Biosynthesis of amino acids, catabolism of amino acids and conversion of amino acids to specialized products, biosynthesis of purine and pyrimidine - formation of deoxyribonucleotides. Biosynthesis of RNA, DNA replication, carcinogensis and DNA repair mechanism. **BIOCHEMISTRY OF PROTEINS** 9 MODULE V Genetic code and protein synthesis, components of protein synthesis, inhibition of protein synthesis. Regulation of gene expression (Prokaryote and Eukaryote). PRACTICALS 1. Preparation of standard buffers (citrate, phosphate and carbonate) and measurement of pH. 2. Titration curve for amino acids. 3. Separation of amino acids by chromatography. 4. The separation of lipids by TLC. 5. Quantitative estimation of amino acids.

6. The determination of glucose by means of the enzyme glucose oxidase.

7. Enzymatic hydrolysis of glycogen by and -amylase.

- 8. Effects of temperature on the activity of amylase.
- 9. Estimation of cholesterol in Blood.
- 10. Estimation of Glucose in blood and urine.
- 11. Estimation of Urea in blood.
- 12. Estimation of ketone bodies in blood.
- 13. Qualitative analysis of inorganic as well as organic constituents of Urine.

	L – 45; P-30;Total Hours –75

REFERENCES:

- 1. Conn E.E. and Stumph P.K., Outline of Biochemistry, John Wiley and Sons, New York.
- 2. Nelson D.L. and Cox M.M., Lehninger Principles of Biochemistry, Macmillan Worth Publishers.
- 3. Stryer L., Biochemistry, W.H., Freeman and Company, San Francisco.
- 4. Harrow B. and Mazur A., Text book of Biochemistry, W.B. Saunders Co., Philadephia.
- 5. Harpers Review of Biochemistry, Lange Medical Publication.
- 6. Jayaraman J., Laboratory Manual in Biochemistry, Wiley Eastern Limited.
- 7. Plummer David J., An Introduction to Practical Biochemistry, McGraw Hill, New Delhi.
- 8. Singh S.P., Practical Manual to Biochemistry, CBS Publisher, New Delhi.

OUTCOMES:

The students are acquainted with the

- Mechanism of enzymes and coenzymes.
- Carbohydrate metabolism
- Lipid metabolism and biological oxidation.

- Biochemistry of amino acids
- Biochemistry of proteins
- Different types of textile mat

CHCY006	PHARMACEUTICAL TECHNOLOGY	L	Т	Р	С
		3	0	0	3
OBJECTIVES:					
To make the stud	lent learn about the				
 pre formula 	ation studies				
 additives u 	used in formulations				
 evaluation 	of drug and packaging				
 cosmetic p 	preparations				
MODULE I	PRE-FORMULATION STUDIES				9
Study of physica	I properties of drug like physical form, particle siz	ze, sł	nape,	der	nsity,
wetting, dielectric	constant, solubility, dissolution and organoleptic p	rope	rties	and	their
effect on formula	tion, stability and bioavailability. Drug delivery t	ypes	and	metl	nods
including nano-de	elivery system.				
MODULE II	LIQUID DOSAGE FORMS				9
Introduction, typ	bes of additives used in formulations, ver	nicles	, st	abili	zers,
preservatives, su	spending agents, emulsifying agents, solubilizer	s, co	olors,	flav	ours
and others, manu	facturing packaging and evaluation of clear liquids	s, sus	spens	ions	and
emulsions.					
MODULE III	SEMISOLID DOSAGE FORMS				9
Definitions, types	s, mechanisms of drug penetration, factors influe	ncin	g per	netra	ition,

semisolid bases and their selection, general formulation of semisolids, clear gels and manufacturing procedure, evaluation and packaging.

MODULE IV	SUPPOSITORIES	9

Ideal requirements, bases, manufacturing procedure, packaging and evaluation.

Pharmaceutical Aerosols: Definition, propellants, general formulation, manufacturing and packaging methods, pharmaceutical applications.

MODULE V	COSMETOLOGY AND COSMETIC PREPARATIONS	9

Structure of skin, formulation of cold cream, vanishing cream, cleansing cream, all purpose cream, protective cream, antiperspirants, deodorant, face powder - Hair structure, Shampoos, Conditioner, Shaving and after shaving products, Dentrifice and Mouthwash, Lipstick, Nail lacquer.

L – 45;	Total	Hours	-45

REFERENCES:

- 1. Remingtonos Pharmaceutical Sciences, Volume I and Volume II, Mack Publishing Co., USA.
- 2. Cooper J.W., and Gunn G., Tutorial Pharmacy, Petman Books Ltd., London.
- 3. Lachman L., Lieberman H.A, Kanig J.L, Theory and Practice of Industrial Pharmacy, Lea and Febiger, Philadelphia, USA.
- 4. Ansel H.C., Introduction to Pharmaceutical Dosage Forms, Lea and Febiger, Philadelphia, USA.
- 5 R.L. Juliano, Drug Delivery Systems, Oxford University Press, Oxford.
- 6. Harrys Cosmetology.
- 7. Balsam and Sagarin, Cosmetics: Science and Technology.
- 8. Thomssen E.G., Modern Cosmetics, Universal Publishing Corporation.
- 9. Mittal B.M. and Saha R.N., A Handbook of Cosmetics, Vallabh Prakashan.

OUTCOMES:

The students will be familiar with the

- pre formulation studies
- additives used in formulations
- evaluation of drug and packaging preparations of cosmetic

CHCY007	GMP, QUALIT	Y ASSURANCE	and	L	Т	Ρ	С
	VALIDATION						
				3	0	0	3
OBJECTIVES:							
To make the stud	lent learn about the						
É good man	ufacturing practices						
É document	ation, quality manage	ment and control					
 Validation 	methods						
IPQC prot	lems						
	and operating charact	taristics curves					
• Sampling	and operating charact						
MODULE I	GOOD MANUFA	CTURING PRACTIC	E				9
						_	
Requirements of	GMP, CGMP1, GLP,	USFDA, WHO guide	lines and	ISO	900	0 se	ries.
MODULE II	DOCUMENTATIO	ON AND MAINTENA	NCE				9
Documentation -	Protocols, Forms a	nd maintenance of i	ecords ir	ו Pł	narm	aceı	itica
industry - Prepar	ation of documents fo	r new drug approval a	and expor	t re	gistra	ation	•
MODULE III	QUALITY ASSU	RANCE					9
Basic concept of	f C, Quality assuration	nce svstems. Sourc	es and c	cont	rol c	of au	L Jality

varia	ation - raw mate	erials, containers, closures, personnel, environment etc.	
MO	DULE IV	VALIDATION	9
Con	cepts in valida		cess
valic	lation in manuf	facturing dosage formulations, applications of process validatio	n.
MO	DULE V	QUALITY CONTROL	9
In p	process quality	y control tests, IPQC problems in pharmaceutical industri	ies -
Sam	pling plans, Sa	ampling and operating characteristics curves.	
		L – 45; Total Hours	s –45
REF	ERENCES:		
1.	Willing Tu	ckerman and Hitchings, Good Manufacturing Practices	s fo
1.	Pharmaceut		10
2.	OPPI, Quali	ity Assurance.	
3.	Loftus and N	Nash, Pharmaceutical Process Validation.	
4.	Florey, Anal	lytical Profile of Drugs (All volumes).	
5.	Indian Phari	macopoeia.	
6.	MODULEed	l States Pharmacopoeia.	
7.	British Phar	macopoeia.	
8.	Garfield, Qu	ality Assurance Principles for Analytical Laboratories.	
OUT	COMES:		
The	student will be	e able to demonstrate the	
É	good manuf	facturing practices	
É	é documentat	ion, quality management and control	
•	Validation m	nethods	
•	IPQC proble	ems	
-		nd operating characteristics curves	

CHCY008	MEDICINAL AND PHARMACEUTICAL	L	Т	Ρ	С
	CHEMISTRY				
		3	0	0	3

OBJECTIVES:

To make the student to learn

- The basic factors governing drug design
- The synthesis and drug action of anti-malarial, anti-bacterial and antituberculosis drugs, etc.

INTRODUCTION TO DRUG DESIGN

9

9

Factors governing drug design . advantages . types of drug . literature survey for preparation of drugs . characterization and structural elucidation of drugs using different spectral methods.

MODULE II

ANALGESICS, ANTIHISTAMINES AND ANTIMALARIALS

Analgesics . narcotic analgesics . morphine analogues . synthesis of codeine . synthetic narcotic analgesics . . antipyretic analgeics . salicyclic acid analogues . . para amino phenol derivatives . Antihistamines-structure, synthesis, activity promethazine, chlorpheneraminemaleate - Antimalerials . classification- structure, synthesis, drug action - quinine-4-amino and 8-amino quinolines . chloroquine.

MODULE III	ANTIBIOTICS AND ANTIBACTERIALS	9
Synthesis and mod	le of action -Antibiotics . pencillin, D-pencillamine, semisyth	netic
pencillin . chloramp	henicol streptomycin, tetracyclines, cephalosporins,-Antibacte	rials
. norfloxacin, ciprofl	loxacin, clotrimazole,	

MODULE IV ANTIHYPERTENSIVE, ANTI-INFECTIVES AND 9 ANTIVIRALS 9

Synthesis and drug action - Antihypertensive drugs-methyldopa - antiseptics and disinfectants: benzalkonium chloride - anthelmintics: mebendazole - antivirals: amantadine, acyclovir.

MODULE V STEROIDS AND RELATED DRUGS

9

Introduction, classification, nomenclature and stereochemistry - (A) Androgens - testosterone (B) Estrogens and progestational agents . progesterone, estradiol, (C) Adrenocorticoids . prednisolone, dexamethasone- prostaglandins: misoprostol.

	L – 45; Total Hours –45

REFERENCES:

- J. B. Stenlake, Medicinal and Pharmaceutical Chemistry, Volume 1, Viva /b S Publication, 1979.
- A. Berger, Medicinal Chemistry, Wiley Interscience, New York, Volume 1 and 2, 1990.
- 4. David A. Williams, David A. Williams A, William O. Foye, Thomas L. Lemke, Foye's Principles of Medicinal Chemistry, Wolter Kluwer, 2008.
- J. B. Stenlake, The Chemical Basis of Drug Action Volume 2, Viva /b S Publication, 1979.

OUTCOMES:

The student will be familiar with

- The drug design,
- The functions of various drugs
- the drug action and uses

CHCY009	POLYMER CHEMISTRY	L	Т	Ρ	С
		3	0	2	4
OBJECTIVES:					
To make the stu	ident conversant with the				
 basic cor 	ncepts of polymers, molecular weight and its distribution	n			
 kinetics polymeriz 	,	C	Cond	lensa	atio
 various p 	olymerization techniques				
 various te 	esting methods for mechanical, thermal and electrical p	orop	perti	es	
• preparati	on, properties and applications of polymeric materials.				
MODULE I	BASIC CONCEPTS OF POLYMERS				
Basic concepts	of polymers . classification of polymers: source, struct	ture	e, pr	oces	sin
behavior, comp	osition and structure, mechanism, application . copc	olyı	mer:	typ	es
terpolymer: De	finition - nomenclature of polymers - tacticity .	cry	/stal	line	ar
amorphous poly	mers - thermal transitions. Molecular weight of poly	yme	ər.	num	nbe
		igh	t dis	strib	utio
weight and vis	cosity average molecular weights . molecular weights				
•	cosity average molecular weights . molecular wei				
weight and vis (problems)					I
(problems)	KINETICS AND MECHANISM OF POLYMER	RIS	SATI	ON	
(problems)		RIS	SATI	ON	
(problems)	KINETICS AND MECHANISM OF POLYMER REACTIONS				
(problems) MODULE II Kinetics and me	KINETICS AND MECHANISM OF POLYMER REACTIONS	onic	c and	d an	ion
(problems) MODULE II Kinetics and me polymerizations	KINETICS AND MECHANISM OF POLYMER REACTIONS echanism of addition polymerization: free radical, catio . Trommsdroff effect . living polymers . Ziegler-Na	onic atta	c and a ca	d an talys	ion
(problems) MODULE II Kinetics and me polymerizations coordination po	KINETICS AND MECHANISM OF POLYMER REACTIONS	onic atta	c and a ca	d an talys	ion

MODULE III	POLYMERISATION TECHNIQUES	9
Polymerisation tech	niques . homogenous and heterogeneous polymerization .	oulk,

solution, suspension and emulsion polymerization . merits and demerits . interfacial, and melt polycondensation.

	7	_
MODULE IV	POLYMER TESTING AND ANALYSIS	

Mechanical properties : tensile strength, Flexural strength, Compressive strength, Izod impact, Rockwell hardness . thermal properties : TGA and DSC - electrical properties: dielectric constant, dissipation factor, and dielectric strength . molecular weight: determination by GPC and viscometry.

MODULE V	POLYMERIC MATERIALS	9				
Preparation, properties and applications . thermoplastics : LDPE, HDPE, PVC, PTFE,						

PET and Nylons . thermosets : phenolic resins, epoxy resins, unsaturated polyesters and polyurethanes . polymer blends and alloys . reinforced plastics.

PRACTICALS

- 1. Synthesis of thermoplastics
- 2. Synthesis of thermosetting plastics
- 3. Determination of molecular weight of polymers
- 4. Demonstration of DTA, TGA, DSC etc.
- 5. Determination of electric properties of polymers

L – 45; P – 30; Total Hours –75

REFERENCES:

- Billmeyer F.N., Text Book of Polymer Science, 3rd Edition, John Wiley and Sons, New York, 1994.
- George Odian, Principles of Polymerisation, 3rd Edition, McGraw Hill Book Company, New York, 1991.
- 3. Young R.S., Introduction to Polymers, Chapman and Hall Ltd., London, 1981.
- 4. P. J. Flory., Principles of Polymer Chemistry, Cornell Press (recent edition).
- 5. Vishu shah., Handbook of plastics testing and failure analysis, John Wiley and Sons, New Jersey, 2007.

6.	I.M. Ward and D.W. Hadley, An Introduction to the Mechanical Properties of
	Solid Polymers, John Wiley and Sons, Chichester, England, 1993.
7.	C.C. Ku and R. Liepins, Electrical Properties of Polymers, Hanser Publications,
	Munich, 1987.
8.	Jacqueline I., Kroschwitz, Concise Encyclopedia of Polymer Science and
	Engineering, John Wiley and Sons, New York, 1998.
9.	Michael L. Berins, Plastics Engineering Hand Book, 5 th Edition, Chapman and
	Hall, New York, 1991.
10	. Gowarikar V.R., Viswanathan N.V and Jayadev Sreedhar, Polymer Science,
	Wiley Eastern Limited, Madras, 1981.
Ol	UTCOMES:
Th	ne student will be able to
1)	
	theory of crystallinity and thermal transitions.
2)	derive the rate equations and explain the mechanism of polymerization reactions
3)	compare and contrast the various polymerization techniques with its merits and
	demerits.
4)	analyze and test the polymers for the mechanical, thermal and electrical properties
5)	summarize the preparation, properties and applications of different polymeric
	materials
1	

CHCY010	CHCY010 NANOTECHNOLOGY				Ρ	С
			3	0	2	4
OBJECTIVES:						
To make the stud	lents conversant with the					

• definition and significance of nanoscale materials and their properties

- different methods of preparation of nanomaterials
- various tools for characterizing nanomaterials applications and impacts of nanotechnology

MODULE I INTRODUCTION OF NANOMATERIALS

Definition of nano - significance of the nanoscale - nanomaterials - Classification - nanoscale in one dimension -thin films, layers and surfaces - nanoscale in two dimensions - carbon nanotubes- inorganic nanotubes, nanowires, biopolymers- nanoscale in three dimensions . nanoparticles, fullerenes, carbon 60, dendrimers, quantum dots; Nanomachines and Devices. Properties of nanomaterials: Size and shape dependent optical (quantum confinement in semiconductors), electronic, emission, transport, photonic, refractive index, dielectric, mechanical, magnetic, catalytic and photocatalytic, non-linear optical properties.

MODULE II

PREPARATION OF NANOMATERIALS

Methods of preparation of nanomaterials, top-down approach and bottom-up: Mechanical milling, laser ablation, electrodeposition, sputtering and microwave plasma synthesis, inert gas condensation - Chemical reduction and oxidation, hydrothermal, micelles, sol-gel processes, photolysis, radiolysis and metallo-organic chemical vapour deposition.

MODULE III

CHARACTERIZATION TECHNIQUES

9

9

Structural Characterization: Atomic Force Microscopy (AFM): Contact and Tapping Mode . Scanning Electron microscopy (SEM), Transmission electron microscopy (TEM), and Powder XRD. Chemical Characterization: Optical spectroscopy, X-ray Photoelectron spectroscopy (XPS). Physical properties: Melting point, Lattice constant. Electrical and magnetic characterization: Mechanical properties-Nanoindentation and nanotribology.

Introduction to advanced Scanning Probe Microscopy - Electrostatic Force Microscopy (EFM) - Magnetic Force Microscopy (MFM) - Scanning Thermal Microscopy (SThM), Scanning Tunnelling Mode (STM), Piezoelectric force

microscopy (PFM), Scanning Capacitance Microscopy (SCM).

MODULE IV APPLICATIONS AND ENVIRONMENTAL IMPACTS

Current applications - sunscreens and cosmetic, composites, clays, coatings and surfaces, tougher and harder cutting tools. Short-term Applications . Paints, remediation, fuel cells, displays, batteries, fuel additives, catalysts. Long - term Applications - lubricants, magnetic materials, medical implants machinable ceramics, water purification, military battle suits. Biomedical applications . Photodynamic therapy in targeted drugs, biosensors, quantum dot technology in cancer treatment, nanoparticles as a drug carrier.

Environmental Impacts: toxicological health effects, relevant parameters in nanoparticle toxicology, integrated concept of risk assessment of nanoparticles

MODULE	V	CARB

CARBON NANOSTRUCTURES

9

History . Carbon nanotubes, carbon clusters, production methods - arc method, laser method, chemical vapour deposition, purification methods- gas phase, liquid phase, intercalation, - dispersion - fuctionalization -chopping, oxidation, and ‰rapping+ of CNTs. Properties of carbon nanotubes: Electrical conductivity, strength and elasticity, thermal conductivity and expansion, field emission, high aspect ratio, highly absorbent.

Applications of carbon nanostructures - field emission, conductive or reinforced plastics, energy storage, conductive adhesives and connectors, molecular electronics, thermal materials, structural composites, fibers and fabrics, catalyst support, CNT ceramics, biomedical applications, air, water and gas filtration.

PRACTICALS

1. Synthesis and characterization of							
a) Copper oxides	b) Titanium oxides	c) Zinc oxides					
d) Cerium oxides	e) Molybdenum oxides	f) Nickel oxides					
g) Graphene oxides	h) Carbon nanotubes oxides	i) Tin oxides					

M.Sc.	Chemi	istry			Regulations 2016	
						
2. Demon	stration of analys	is of nanopart	icles by			
a) XEM	b)TEM	c)XRD	d)XPS	e) AFM		
				L – 45; P – 3	60; Total Hours –75	
REFERE	NCES:					
	o T., Nano: echnology, cGraw-Hill, New I		ntials Und	erstanding	Nanoscience and	
 Mark Ratner and Daniel Ratner, Nano Technology, Pearson Education, New Delhi, 2003. 						
-	J, Machining Proc athan B., Nano M		luipment, 2n	d Edition, Pre	ntice Hall, 2000.	
	otechnology by S		, MJP Publis	shers, India (2	010)	
OUTCON	IES:					
The st	udents will be ab	le to				
• diff	erentiate the nan	omaterials ba	sed on their	dimensions		
	quire knowledge hniques	e of various	synthetic	methods ar	nd characterization	
• sel	ect the appropria	te nanomateri	als for speci	fic application	S	

CHCY011	ICY011 ELECTRICAL PROPERTIES OF POLYMERIC MATERIALS		Т	Ρ	С
	MATERIALS				3
OBJECTIVES:	·	1			
To make the stud	ent to learn				
The blend	morphology				

• Effect of structural features

• Resistivity, thermal behavior and electrical behavior of polymeric materials

MODULE I	POLYMER BLENDS	9
----------	----------------	---

Introduction . equilibrium phase . polymer behaviour . effect of polymer structure, polymer . polymer interaction . special structural effects . blend morphology . chemical reactions . properties . miscible blends . immiscible blends . toughened polymers - Commercial blends . applications.

MODULE II	RESISTIVITY			9
	nalizzar az udala handaran basulatara	the ended	4 m a m in an	

General features . polymer as wide band gap insulators . theories . trapping . carrier injection . effects of structural features . effects of additives.

MODULE III	DIELECTRIC BEHAVIOUR	9

Mechanism of laws . relaxation . non-polar polymers . amorphous dipolar polymers . crystalline dipolar polymers . effects of structures, additives and impurities . testing of degradation in polymers.

MODULE IV		THEF	THERMAL PROPERTIES					9	
Specification	of t	thermal	evaluation	and	classification	of	electrical	insulatio	n.
				• •	<i>.</i>				

determination of resistivity . relating resistance of solid insulating materials . relating resistance of insulating materials to breakdown by surface discharges . artificial pollution tests of HV insulator . AC, DC.

MODULE V	BREAKDOWN TESTING ANALYSIS	9
Breakdown test me	ethods . statistical analysis . graphical techniques . nume	rical
techniques.		

	L – 45; Total Hours –45
--	-------------------------

REFERENCES:

- 1. J. Kreschurity, concise Encyclopedia of polymer Science and Engineering, John Wiley and Sons, New York, 1990.
- 2. M.E. Balrd, Electrical Properties of Polymeric Materials, The Plastic Institute, London.
- 3. A. Bradwell (Editor), Electrical Insulation, Peter Peregrinus Ltd., 1983.
- 4. Tiller Shugg W., A Handbook of Electrical and Electronic Materials, Van Nostrand Reinhold, New York, 1986.
- 5. L.A. Dissado and J.C. Fothergil, Electrical Degradation and Breakdown in Polymers, Peter Perenguins Ltd., London, 1992.

OUTCOMES:

The student will be able to

- mention the properties and applications of polymer blends
- discuss the resistivity and dielectric behaviour of polymeric materials
- discuss the thermal properties and breakdown testing analysis of polymers.

CHCY012	POLYMER STRUCTURE AND PROPERTY RELATIONSHIP	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES:					
To make the stude	ent to learn the				
 structure of 	structure of polymers				
 various properties of polymers 					
MODULE I	STRUCTURE OF POLYMERS				9

Linear, branched, cross linked, and network polymers - homochain and hetero atomic chain polymers - Copolymers - Linear and cyclic arrangement - Prediction of polymer properties, group contribution techniques, topological techniques - Volumetric properties - molar volume, density, vanderWaals volume - Coefficient of linear thermal expansion and volumetric thermal expansion - Pressure volume temperature (PVT) relationship.

MODULE II

MECHANICAL PROPERTIES

9

Stress-strain properties of polymers - Effect of polymer structure on modulus of elasticity, tensile strength, flexural strength, impact strength, yield strength, fracture toughness - Crazing in glassy polymers - Ductile brittle transition - Effect of additives on mechanical properties of polymers - Creep, stress relaxation and fatigue

MODULE III	THERMODYNAMIC AND TRANSITION PROPERTIES	9

Transition temperature in polymers, glass transition (Tg), melt transition (Tm), relationship between Tg and Tm - other transitions like β -transitions, upper and lower glass transition temperatures - Prediction of Tg and Tm of polymers by group contributions. Calorimetric properties - Heat capacity, specific heat, latent heat of crystallization and fusion, enthalpy and entropy - Calculation of heat capacities of polymers.

MODULE IV	ELECTRICAL AND OPTICAL PROPERTIES	9

Effect of polymer structure on dielectric constant, power factor, dissipation factor, and loss factor - effect of frequency of voltage and temperature on dielectric properties - Prediction of molar polarization and effective dipole moment - Effect of õ additives on electrical properties of polymers - Optical properties - Effect of polymer structure on optical properties - clarity, transparency, haze, transmittance, reflectance, and gloss - Prediction of refractive indices of polymers by group contributions.

MODULE V	CHEMICAL PROPERTIES	9			
Cohesive energy, o	cohesive energy density, solubility parameter, determinatio	n of			
solubility parameter of polymers - Prediction of solubility parameter - Effect of polymer					

structure on solubility in solvents and oils - Influence of structure in prediction of flame retardancy, water repellency - Chemical resistance of polymers - Polymer toxicity. L – 45; Total Hours –45 **REFERENCES:** D.W. vanKrevelen and P.J. Hoftyzen, Properties of Polymer, 3rd Edition, 1. Elsevier Scientific Publishing Company Amsterdam, Oxford New York, 1990. 2. J.E. Mark (Editor), AIP, Physical Properties of Polymers Hand Book, Williston, 1996. 3. D.A. Seanor, (Editor), Electrical Properties of Polymers, Academic press, New York, 1982. Jozef Bicerano, Prediction of Polymer Properties, 2nd Edition, Marcel Dekker 4. Inc. New York, 1995. 5. J.M. Margolis (Editor), Engineering Thermoplastics Properties and Applications, Marcel Dekker, New York 1985. R.J. Samuels, Structured Polymer Properties, John Wiley and Sons, New York, 6. 1974. 7. I.M. Ward and D.W. Hadley, An Introduction to the Mechanical Properties of Solid Polymers, John Wiley and Sons, Chichester, England, 1993. 8. C.C. Ku and R. Liepins, Electrical Properties of Polymers, Hanser Publications, Munich, 1987. 9. F. Bueche, Physical Properties of Polymers, Wiley, New York, 1962. 10. J. Mort and G. Pfister, (Editor), Electronic Properties of Polymers, Wiley Interscience, New York, 1982. **OUTCOMES:** At the end of the course, the students will be familiar with the structure of polymers • effect of polymer structure on the properties such as mechanical, electrical and

optical properties

CHCY013	CONCEPTS	AND	TECHNIQUE	s in	L	Т	Ρ	С
	CATALYSIS				3	0	0	3
OBJECTIVES:						1	_	
The objectives	of this course is to							
-	e basic concepts i		n catalytic proces	ses.				
	e different prepara				s by	pred	cipita	atior
impregna	ation, mixing metho	od, ion-ex	change, etc.					
develop	a knowledge in	the phys	ic-chemical and	spectra	l ch	arac	teriza	atio
methods	for catalytic mater	rials.						
 evaluate 	the catalysts using	g different	catalytic reactor	S				
 use diffe 	rent types catalyst	s for varic	ous organic react	ons in de	etail.			
MODULE I	CONCEPTS	OF CAT	ALYSIS					
acid-base cata	lysis . catalysis	by trans	ition metal ions	and th	eir	com	plexe	es
supported trans	sition metal compl	exes as o	catalysts . catal	ysis by e	enzy	mes	. pl	has
transfer catalys	sis - photocatalys	is . adso	orption . chemis	orption	on i	neta	ls, r	neta
oxides and se	emiconductors - I	kinetics c	of unimolecular	and bin	nole	cular	sui	fac
reactions - Co	ntact time - WH	SV - time	e on stream - (Catalyst	dea	ctiva	tion	an
regeneration								
MODULE II	HETEROGE	NEOUS C	CATALYSTS AN		2			
	SYNTHESIS	i						
Metals, metal	oxides, mixed me	tal oxides	s, supported me	tals, spi	nels	, per	ovsł	kites
super acids, h	ydrotalcites, zeoli	ites and	zeotypes (small	, mediu	m, I	arge), sl	nap
selective cataly		notoriolo (
· · · · · · · · · · · · · · · · · · ·	sts, mesoporous n	nateriais (SBA, MCM, KIT,	AIPOS)				
	sts, mesoporous n ynthesis, sol-gel p	·			ovel	0000	.	tha

- MODULE operations in catalyst manufacture - drying, calcination, spray drying

MODULE III CATALYSTS CHARACTERIZATION

Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT), Diffuse Reflectance UV-Visible Spectroscopy (DRSUV), X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET) Surface Area Analysis, Barrett-Joyner-Halenda (BJH) Pore Size and Volume AnalysisMagic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) (²⁹Si, ²⁷AI, ³¹P), Auger Electron Spectroscopy (AES), Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM/EDAX), Electron Probe Micro-Analyzer (EPMA), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), X-ray Photoelectron Spectroscopy (XPS), Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS), Transmission Electron Microscopy (TEM), Electron Spin Resonance Spectroscopy (ESR).

MODULE IV	CATALYTIC REACTO	ORS		9
Integral and fixed	bed reactors - differ	ential reactors	- stirred flow react	ors -
microcatalytic react	ors of pulse type - s	tatic reactors	high pressure reac	tors -
reaction monitoring	by GC and GC-MS.			
MODULE V	CATALYTIC REACTI	ONS		9
Catalytic asymmetri	c synthesis - C-C, C-H	bond formation	n, oxidation - acid cata	lysed
isomerisation -	heterogeneous hy	drogenation,	dehydrogenation,	cyclo
dehydrogenation, ox	kidation - Homogeneou	is catalysis by t	ransition metal comple	xes -
metathesis of olefine	s - synthetic fuels.			
	· · · · · · · · · · · · · · · · · · ·			
			L – 45; Total Hour	s –45
REFERENCES:				

- 1. J. Rajaram and J.C. Kuriacose, Kinetics and Mechanisms of Chemical Transformations, Macmillan Publishers India Limited, 2000.
- 2. John Meurig Thomas and W. John Thomas, Principles and Practice of

	, , , , , , , , , , , , , , , , , , , ,
	Heterogeneous Catalysis, Wiley, 1997.
3.	Herman Pines, The Chemistry of Catalytic Hydrocarbon Conversions,
	Academic Press, 1981.
4.	J.W. Niemantsverdriet, Spectroscopy in Catalysis, 2 nd Edition, John Wiley and
	Sons, 2008.
5.	2Gadi Rothenberg, Catalysis: Concepts and Green Applications, WILEY-VCH
	Verlag GmbH & Co. KGaA, Weinheim, 2008.
6.	B. Viswanathan, S. Sivasanker and A.V. Ramaswamy (Editors), Catalysis:
	Principles and Applications, Narosa Publishing House, 2002.
7.	Julian R.H. Ross, Heterogeneous Catalysis: Fundamentals and Applications,
	Elsevier, 2011.
8.	Gerhard Ertl, Handbook of Heterogeneous Catalysis, 2 nd Edition, Volume 6,
	Wiley-VCH-Verlag, 2008.
9.	Charles N. Satterfield, Heterogeneous Catalysis in Practice, McGraw-Hill,
	1980.
10.	Jens Hagen, Industrial Catalysis: A Practical Approach, 2 nd Edition, Wiley,
	2006.
11.	Jens Weitkamp, Lothar Puppe (Editors), Catalysis and Zeolites: Fundamentals
	and Applications, Springer, 1999.
12.	R.A. Sheldon and Herman van Bekkum (Editors), Fine Chemicals through
1.0	Heterogeneous Catalysis, John Wiley and Sons, 2008.
13.	Michel Che and Jacques C. Védrine (Editors), Characterization of Solid
	Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity,
	John Wiley and Sons, 2012.
OUT	COMES:
To m	ake the student to learn about
•	Classification of polymeric materials.
•	the process of elastomers
•	different types of moulding
•	characterization of polymers
1	

effect of structure on polymer properties

•

CHCY014	POLYMER TECHNOLOGY	L	Т	Ρ	С
	3	3	0	0	3
OBJECTIVES:				1	
To make the stude	ent to learn about				
Classificati	on of polymeric materials.				
the process	s of elastomers				
 different type 	bes of moulding				
characteriz	ation of polymers				
 effect of str 	ucture on polymer properties				
MODULE I	POLYMERIC MATERIALS				9
Introduction . cla	ssification . thermoplastics . cellulose derivatives .	L	DPE	, HD	DPE,
PVC, PMMA, PTF	E, PET and Nylons . thermosetting resins . phenoli	lic r	resin	s, e	роху
resins, silicones a	nd polyurethanes . polymer blends and alloys . reinf	ford	ced p	olast	ics.
MODULE II	ELASTOMERS				9
Natural rubber . p	rocessing . vulcanization . synthetic rubber . SBR, I	ne	opre	ne, l	outyl
and thiocol rubb	ers . thermoplastic elastomers . high performand	ce	poly	yme	rs.
polythers . PEEK	, polysulphones and polyimides.				
MODULE III	MOULDING TECHNIQUES				9
Moulding constitu	ents . functions . moulding techniques . compression	ion	. inj	jecti	on .
extrusion . blow r	noulding . thermoforming . Vacuum forming . pultrus	sio	n.c	casti	ng .

	1				
calendaring . RIM .	lamination.				
MODULE IV	CHARACTERISATION AND TESTING	9			
Characterisation of	polymers by IR and NMR. Thermal properties by TGA and I	DSC			
. Testing tensile s	trength, Izod impact, Compressive strength, Rockwell hardn	iess,			
Vicot softening poir	nt. Test for electrical resistance, dielectric constant, dissipa	ation			
factor, arc resistanc	e and dielectric strength . water absorption.				
MODULE V	POLYMER PROPERTIES	9			
Effect of structure o	n mechanical, chemical, thermal, electrical and optical properti	ies.			
	L – 45; Total Hours	-45			
REFERENCES:					
1. Michael L. B	erins, Plastics Engineering Hand Book, 5 th Edition, Chapman	and			
Hall, New Yo	ork, 1991.				
2. Jacqueline I	2. Jacqueline I., Kroschwitz, Concise Encyclopedia of Polymer Science and				
Engineering	, John Wiley and Sons, New York, 1998.				
3. Iyson R.W., 1992.	Specialty Polymers, Blackie Academic and Professional, Lon	don,			
4. Maurice Mor 1987.	rton, Rubber Technology, van Nostrand, Reinhold, New Y	′ork,			
OUTCOMES:					
The students will be	familiar with the				
 classification 	of polymeric materials.				
the process of	the process of elastomers				
 different type 	es of moulding				
 characterizat 	ion of polymers				
effect of structure on polymer properties					
CHCY015	INORGANIC CHEMICAL TECHNOLOGY	L	Т	Р	С
----------------------------------	--	---------	-------	--------	-------
		3	0	0	3
OBJECTIVES:					
To make the stude	ent to learn about the				
 fuel and inc 	dustrial gases				
chemicals	used in fertilizers and glass industries				
 principles c 	f metallurgic processes				
MODULE I	FUEL AND INDUSTRIAL GASES				9
Fuel and industria	al gases . production and uses of producer gas	, wa	ter g	las,	coke
oven gas, acetyle	ene, natural gas and LPG: Liquefaction of gase	s.	nobl	e ga	ases,
carbon dioxide, hy	/drogen, oxygen, nitrogen.				
MODULE II	HEAVY CHEMICALS				9
Chloralkali indust	ry . soda ash, caustic soda and chlorine. Cher	nical	s fro	m s	ea.
sodium chrloride,	magnesium chloride and bromine.				
MODULE III	ACIDS AND FERTILIZERS				9
Sulphur and sulp	bhuric acid . nitric acid . ammonia . nitroge	nous	fer	tilize	rs.
phosphorous . ph	osphoric acid . phosphatic fertilizers . potassic fe	rtilize	ers.		
MODULE IV	SILICATE INDUSTRIES				9
Silicate industries	. refractories . abrasives . ceramics . glass .	cem	ent,	lime	and
gypsum.					
MODULE V	PRINCIPLES OF METALLURGICAL PROCES	SES	5		9

hydrometallurgy, powder metallurgy and electrometallurgy - Explosives and propellants . nuclear materials.

REFERENCES:

- 1. B. Norris Shreve and Joseph A. Brink, Chemical Process Industries, McGraw Hill, Kogakusha Ltd., 1991.
- 2. M. Gopala Rao and Marshall Sitty (Editors), Drydencs Outlines of Chemical Technology, Affiliated East West Press Pvt. Ltd., 1992.
- 3. B.K. Sharma, Industrial Chemistry, GOEL Publishing House, 1991.
- 4. James A. Kent (Editors), Riegelos Industry Chemistry, Asia Publishing House, 1989.

OUTCOMES:

The student will be familiar with the

- use of caustic soda, sodium chloride
- N,P and K fertilizers
- Ceramics, glass, etc.
- Powder and extractive metallurgy

CHCY016 ORGANIC CHEMICAL TECHNOLOGY		L	Т	Ρ	С			
		3	0	0	3			
OBJECTIVES:								
To make the student to learn about the								
 industrial organic synthesis 								

·	uticals, pesticides and dyes	
MODULE I	BASIC PRINCIPLES OF CHEMICAL TECHNOLOGY	9
Classification of	chemical technological processes . chemical equilibrium	in
technological pro	cesses . rates of technological processes . designing and mode	ling
chemical technolo	ogical processes and reactors.	
MODULE II	INDUSTRIAL ORGANIC SYNTHESIS	9
Raw materials	manufacture of methyl alcohol, ethyl alcohol, ethylene, 1	1,3-
butadiene, acety	lene, ethyl benzene, cumene, linear alkyl benzenes and a	ılkyl
phenols.		
MODULE III	SYNTHETIC ORGANIC CHEMICALS	9
Chemicals derive	d from ethylene . polyethylene, ethylene oxide, ethylene dichlor	rido
-	ocarbons . chemicals derived from propylene . isopropyl alcol	
	crylontrile, propylene oxide. oxidation of butane. esters. ma	leic
annyariae . aceta	one . ethyl methyl ketone . disphenol . DDT . aniline.	
MODULE IV	PHARMACEUTICALS AND PESTICIDES	9
Introduction . ma	anufacture . aspirin, Phenobarbital, penicillin, malathion, parath	nion
and naled.		
MODULE V	DYES	9
Classification .	raw materials . intermediates . manufacture . azodyes	<u> </u>
triphenvlmethane	e dyes . xanthene dyes. Indigoid and thioindigoid dyes, sulphur dy	
	optical brighteners.	
F		
	L – 45; Total Hours -	-45
REFERENCES:		
	gins, MODULE Processes in Organic Synthesis, McGraw Hill Bo	
1. P.H. Grog	gins, worder frocesses in Organic Synthesis, widdraw All Bo	

Co., Kogakusha, 1984.

- Peter Wiseman, An Introduction to Industrial Organic Chemistry, 2nd Edition, Applied Science Publishers Ltd., London, 1979.
- J.A. Kent, Reigelos Hand Book of Industrial Chemistry, 7th Edition, vanNostrand Reinhold Co., New York, 1974.

OUTCOMES:

The student will be familiar with the

- industrial organic processes with enes, alcohols, esters, ketones, etc.
- Manufacture of aspirin, penicillin xanthenes dyes, etc.

CHCY017	ICY017 CHLOR-ALKALI TECHNOLOGY				С			
		3	0	0	3			
OBJECTIVES:								
To make the stud	ent to learn about the							
Electrode r	materials							
Membrane	cells							
Process co	ontrol and instrumentation							
MODULE I	ELECTODES				9			
Anodes, cathodes	s and separators for chlor-alkali production: graphi	te, n	netal	ano	des,			
steel cathodes, co	pated cathodes, asbestos diaphragms, Improved di	aphi	ragm	s, ca	ation			
exchange membranes - different types - preparation-characteristics.								
MODULE II DIAPHRAGM CELL PROCESS								
Diaphragm cell p	rocess, different cell designs, deposition of diaphra	agm,	mer	cury	cell			

process - different cell designs, reasons for hydrogen evolution in the primary cells,

denu	ider vertical and	horizontal type	s, desi	gn aspects.	
MOD	OULE III	MEMBRANE C	ELL P	PROCESS	9
MOD					
Mem	brane cell proc	cess, different d	lesigns	of membrane cell, monopolar and bip	olar
cells	- conversion	of mercury and	d diapl	hragm cells to membrane cells - fac	ctors
affec	ting the perforn	nance of the me	mbrane	e cells.	
MOD	OULE IV	MODULE OPE	RATIC	DNS	9
MOD	OULE operation	ns in chlor-alk	ali inc	lustry, salt washing, saturation - b	orine
dech	lorination - pri	imary brine pu	rificatio	n - secondary brine purification, cau	ustic
conc	entration - sep	aration of salt f	rom dia	aphragm cell liquor, handling of hydrog	gen,
chlor	ine and caustic	, chlorine liquefa	action.		
MOD	OULE V		ISERV	ATION IN CHLOR-ALKALI	9
		INDUSTRY			
Ener	gy conservatio	on in chlor-alka	ali ind	ustry, chlorine utilization - materials	s of
cons	truction - electr	ode protection	devices	s - environmental pollution and its cont	trol -
analy	/tical technique	s - process cont	rol and	instrumentation - safety aspects.	
				L – 45; Total Hours	-45
REFI	ERENCES:				
1.	Ullmannos En	cyclopedia of In	dustria	I Chemistry, Volume 6, 1986.	
2.	Krik and Othr	mer, Encycloped	lia of C	hemical Technology, 4 th Edition, 1991.	
3.	N.M. Prout a	nd J.S. Moorho	use, M	odern Chlor-Alkali Technology, Volume	эIV,
	Elsevier Appl	ied Science, Lor	ndon, 1	990.	
4.	T. Wellingtor Essex, 1992.	n, Modern Chlor	r-Alkali	Technology, Volume V, Elsevier Scie	nce,
	LUUCA, 100Z.				
OUT	COMES:				

The students will be familiar with the

- anode, cathode and membrane cells
- MODULE operations in chlor-alakli industry and instrumentation

CHCY018	MODULE OPERATIONS AND MODULE L T P	С
	PROCESSES	
		3
OBJECTIVES:		
To make the stud	dent conversant with	
Chemical	engineering concepts	
Fouriers la	aw and HETP concepts	
 Laws of cr 	ushing and types of Crushers	
MODULE I	BASIC CONCEPTS	9
Stoichiometric pr	inciple . material and energy balances - Combustion, Theoretical	air
for combustion, F	lue gas analysis - water treatment - environmental protection.	
MODULE II	HEAT AND MASS TRANSFER	9
Modes of Heat T	ransfer - Fourier o law . simple numerical problems on conduction	n.
natural and forc	ed convection . heat transfer equipment . Drying, Distillation	۱.
vapour-liquid eq	uilibria . distillation methods . continuous rectification of bin	ary
systems.		
MODULE III	MASS TRANSFER OPERATIONS	9
Adcorption and	adsorption principle . equilibrium relationships . methods	of
Ausoiption and	seest principie i equinariarii forationinpo i motificati	
•	ious types of equipment - Extraction and Leaching . liquid extract	ion

MODULE IV MECHANICAL OPERATIONS 9 Laws of crushing . closed and open circuit grinding . various types of crushers and grinders . settling, floatation and filtration concepts. 9 MODULE V MODULE PROCESSES 9 Nitration, sulphonation, halogenation, esterification, amination, saponification and hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. 9 REFERENCES: 1. Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5 th Edition, 2007. 2. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6 th Edition, McGraw Hill Book Co. 2001. 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. 0UTCOMES:	current and counter-current extraction operations - Crystallization . types of
Laws of crushing . closed and open circuit grinding . various types of crushers and grinders . settling, floatation and filtration concepts. MODULE V MODULE PROCESSES 9 Nitration, sulphonation, halogenation, esterification, amination, saponification and hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. 9 REFERENCES: 1. Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5 th Edition, 2007. 2. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6 th Edition, McGraw Hill Book Co. 2001. 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with • Bernoullis equation & its applications and 1	crystallization equipment . material and energy balances.
Laws of crushing . closed and open circuit grinding . various types of crushers and grinders . settling, floatation and filtration concepts. MODULE V MODULE PROCESSES 9 Nitration, sulphonation, halogenation, esterification, amination, saponification and hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. 9 REFERENCES: 1. Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5 th Edition, 2007. 2. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6 th Edition, McGraw Hill Book Co. 2001. 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with • Bernoullis equation & its applications and 1	
grinders . settling, floatation and filtration concepts. MODULE V MODULE PROCESSES 9 Nitration, sulphonation, halogenation, esterification, amination, saponification and hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. 9 REFERENCES: L - 45; Total Hours -45 1. Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5 th Edition, 2007. 2. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6 th Edition, McGraw Hill Book Co. 2001. 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with • Bernoullis equation & its applications and	MODULE IV MECHANICAL OPERATIONS
MODULE V MODULE PROCESSES 9 Nitration, sulphonation, halogenation, esterification, amination, saponification and hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. L – 45; Total Hours – 45 REFERENCES: 1. Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5 th Edition, 2007. 2. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6 th Edition, McGraw Hill Book Co. 2001. 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with • Bernoullis equation & its applications and	Laws of crushing . closed and open circuit grinding . various types of crushers an
Nitration, sulphonation, halogenation, esterification, amination, saponification and hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. L - 45; Total Hours -45 REFERENCES: 1. Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5 th Edition, 2007. 2. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6 th Edition, McGraw Hill Book Co. 2001. 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with • Bernoullis equation & its applications and	grinders . settling, floatation and filtration concepts.
 hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. L – 45; Total Hours – 45 REFERENCES: Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	MODULE V MODULE PROCESSES
 hydrogenation . role of the above MODULE processes in such industries as petroleum, drugs, pharmaceuticals and organic synthesis. L – 45; Total Hours – 45 REFERENCES: Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	Nitration culphonation balagonation actorification amination consulting on
 petroleum, drugs, pharmaceuticals and organic synthesis. L – 45; Total Hours – 45 REFERENCES: Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
 L – 45; Total Hours –45 REFERENCES: Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
 REFERENCES: 1. Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5th Edition, 2007. 2. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6th Edition, McGraw Hill Book Co. 2001. 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
 Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	L – 45; Total Hours –4
 Groggins P.H., MODULE Processes in Organic Synthesis, McGraw Hill Book Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemica Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
 Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemical Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	REFERENCES:
 Co., Kogakusha, 5th Edition, 2007. McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemical Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	1 Cragging D.H. MODIII E Dragonage in Organia Synthesia, McCray, Hill Bas
 McCabe W.L., Smith J.C. and Harriot P., MODULE Operations of Chemical Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
 Engineering, 6th Edition, McGraw Hill Book Co. 2001. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
 3. Perry J.H., Handbook of Chemical Engineers, McGraw Hill Book Co., 2006. 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
 4. Badger W.I. and Banchero I.T., Introduction to Chemical Engineering, McGraw Hill Book Co. Inc., Kogakusha, 1988. OUTCOMES: The students will be familiar with Bernoullis equation & its applications and 	
OUTCOMES: The students will be familiar with • Bernoullis equation & its applications and	
The students will be familiar withBernoullis equation & its applications and	
The students will be familiar withBernoullis equation & its applications and	
The students will be familiar withBernoullis equation & its applications and	
Bernoullis equation & its applications and	OUTCOMES:
	The students will be familiar with
demonstrate the role of MODULE processes in various industries.	 Bernoullis equation & its applications and
	 demonstrate the role of MODULE processes in various industries.

CHCY019	WATER AND WASTEWATER TREATMENT		Т	Ρ	С

		3	0	0	3			
OBJECTIVES:								
To make the stude	nt to learn about the							
 Quality stan 	dard for drinking water							
 Industrial was 	ater treatment methods							
Waste Wate	er analysis and treatment							
Adsorption	and oxidation process							
MODULE I	REQUIREMENTS OF WATER AND PRE TREATMENT	ELIN	IINA	RY	9			
Requirements of	water . quality standards for drinking water .	obj	ect o	of w	ater			
treatment . conv	rentional treatment . turbidity removal . cause	e o	f tur	bidi	ty.			
coagulation . co	mmon coagulants . theory of coagulation . r	nixir	ng b	asin	IS.			
flocculation . prine	ciple and design of flocculators . sedimentation .	se	ttling	tan	ks .			
settling velocity.	surface loading rate . efficiency of settling tanks .	slu	ıdge	rem	oval			
mechanism.								
MODULE II	INDUSTRIAL WATER TREATMENT				9			
Filtration . size an	d shape characteristics of filtering media . sand fil	lters	. hy	/dra	ulics			
of filtration . desig	n considerations . radial, upflow, high rate and mu	ultim	nedia	filte	ers.			
pressure filter - Wa	ater softening . lime soda, zeolite and demineraliza	ation	proc	cess	es.			
industrial water tre	atment for boilers.							
MODULE III	TREATMENT METHODS				9			
Taste and odour c	ontrol. absorption. activated carbon treatment. r	remo	oval	of co	lour			
. iron and mang	anese removal . aeration, oxidation, ion exch	ang	e ar	nd c	other			
methods . effects	s of fluorides . fluoridation and defluoridation .	. de	esaliı	natic	on.			
corrosion prevention and control . factors influencing corrosion . Langelier index .								
corrosion control n	neasures.							

MOD	ULE IV	WASTEWATER T	REATMENT	9
Wast	awater treatm	ant pre and prim	ary treatment . equalization neutralizatio	<u></u>
		• •	ation . oil separation gas stripping of vol	
	0 0		s and stabilization basins . aerated lagoo	
•	•	C C	tion . anaerobic decomposition.	15.
activa	lied sludge pro			
MOD	ULE V	ADSORPTION AN	D OXIDATION PROCESSES	9
Cherr	nical process	. adsorption . the	ory of adsorption . ion exchange proces	SS.
chem	ical oxidation	. advanced oxidati	on process . sludge handling and dispos	al.
misce	ellaneous treat	ment processes.		
			L – 45; Total Hours	-45
REFE	RENCES:			
1.	W. Wesley	Eckenfelder, Jr., In	dustrial Water Pollution Control, 2 nd Edi	tion,
	McGraw Hill	Inc., 1989.		
2.	Metcalf and 1991.	Eddy, Waste Wate	r Engineering, 3 rd Edition, McGraw Hill	Inc.,
3.		nvironmental Pollut	ion Control Engineering, Wiley Eastern	Ltd.,
4.		n Pollution Contr	ol in Process Industries, Tata McGraw	Hill
т.	-	ompany Ltd., 1994.		
5.	Howard S.		R. Rowe and George Tchobanogl	2110
0.		al Engineering, McG	•	540,
Ουτα	COMES:			
The s	tudent will be	amiliar with the		
•	quality requir	ement of water,		
•	analysis and	treatment methods.		

CHCY020		ANAGEMENT	AND /	AIR	L	Т	Ρ	С
	POLLUTION			-	3	0	0	3
OBJECTIVES:								
To make the stud	ent to learn about the							
 Solid waster 	e collection and disposa	I						
Air quality	and air pollution control							
 Energy red 	overy							
MODULE I	SOLID WASTE							9
Solid waste . de	finition . characteristic	s . perspectiv	ves . typ	oes (of s	olid	was	te.
sources . proper	ies of solid waste . phy	sical and chem	nical com	posit	ion	. ch	ange	es in
composition . so	id waste management .	materials flow	w.redu	ction	in r	aw r	nate	rials
usages and solid	waste quantities . reuse	e of solid waste	material	ls.				
MODULE II	SOLID WASTE COL	I FCTION AN		SAL				9
					-			
Solid waste gene	ation . on-site handling	, storage and p	orocessin	g.c	colle	ectior	n of s	solid
waste. transfer a	nd transport . processi	ng techniques .	ultimate	e disp	oosa	al.		
		עכ						9
MODULE III	ENERGI RECOVER							9
Energy recovery	processing techniques	s. materials re	ecovery s	syste	ms	. rec	cove	ry of
biological conver	sion products and the	rmal conversio	on produ	icts	. n	nater	ials	and
energy recovery	ystem.							
MODULE IV	AIR POLLUTION							9
Air pollution . g	lobal implication of air	pollution . M	IODULE	s of	me	asur	eme	nt.
sources of pollu	tants . classification	of pollutants	. mete	orolo	gy	and	na	tural
purification proce	sses . influence of m	neteorological	phenome	ena	on	air c	quali	ty.
effects on man	and vegetation - Effect	s of pollutants	on hun	nan	beir	ngs,	anin	nals,

	·									
vegeta	vegetation, buildings and materials.									
MODULE V ANALYSIS AND CONTROL DEVICES										
MODU	ULE V							9		
Samp	Sampling and analysis . particulars and gaseous pollutants . methods for monitoring									
air po	llutants . a	air q	uality cor	ntrol d	evices	for particulate	and gaseous contaminar	nts.		
major	polluting in	ndus	stries.m	easur	es to ch	neck industrial	pollution.			
					1	Γ				
							L – 45; Total Hours	-45		
REFE	RENCES:									
					<u> </u>					
1.	Howard		•				George Technobanog	ous,		
			•	•		w Hill Inc., 198				
2.							al Engineering and Scie	nce,		
	Prentice-I	Hall	of India F	vt. Lte	d., 1991	l.				
3.	S.K. Garg	g, Se	wage Dis	sposa	I and Ai	r Pollution Eng	jineering, Khanna Publish	iers,		
	1990.									
4.	V.P. Kude	esia,	Air Pollu	tion, F	Pragati	Prakashan Put	olishers, 1992.			
5.	M.N. Rao	anc	1 H.V.N. F	Rao, A	vir Pollu	tion, Tata McG	Fraw Hill Publishing Comp	bany		
	Ltd., 1994	4.								
OUTCOMES:										
The s	tudents wil	l be	familiar v	vith th	e types	of				
•	solid was	te, c	ollection	and d	isposal					

• air pollutants and control measures

CHCY021	INDUSTRIAL ELECTROCHEMISTRY	L	Т	Ρ	С
		3	0	0	3
			1		1

OBJECTIVES:		
To make the studer		
 basics of electron 	ctrolysis	
 electrometall 	urgy	
 metal refining 	9	
 electrosynthe 	esis	
 industrial ele 	ctrochemical process	
MODULE I	CHLORALKALI INDUSTRY	9
General concepts	of brine electrolysis . modern technological development	:S.
chlorine cell techno	ogies. mercury and diaphragm cell. membrane. cell.	
MODULE II	ELECTROMETALLURGY	9
Metal extraction an	d refining . electrowinning . aluminium extraction . manufac	ture
of sodium, lithium a	nd magnesium . hydrometallurgical processes . electrorefini	ng .
aqueous and molter	n salt electrorefining.	
MODULE III	METAL FINISHING	0
		9
Pretreatment . con	version coatings . phosphating . types, methods, properties	•
	version coatings . phosphating . types, methods, properties evaluation and testing . applications . anodizing . principle	and
influencing factors .		and and
influencing factors . applications - electr	evaluation and testing . applications . anodizing . principle	and and
influencing factors . applications - electr	evaluation and testing . applications . anodizing . principle oplating . objectives, theory and method . electroplating of ni	and and
influencing factors . applications - electr . electroless plating MODULE IV	evaluation and testing . applications . anodizing . principle oplating . objectives, theory and method . electroplating of nig.	and and ckel 9
influencing factors . applications - electr . electroless plating MODULE IV Electrolytic prepara	evaluation and testing . applications . anodizing . principle oplating . objectives, theory and method . electroplating of nig . galvanizing . tinning.	and and ckel 9 Its .
influencing factors . applications - electr . electroless plating MODULE IV Electrolytic prepara KMnO ₄ . K ₂ Cr ₂ O ₇	evaluation and testing . applications . anodizing . principle oplating . objectives, theory and method . electroplating of ni g . galvanizing . tinning. ELECTROSYNTHESIS tion of inorganic compounds . fluorine . peracids and their sa	and and ckel 9 Its . le .
influencing factors . applications - electr . electroless plating MODULE IV Electrolytic prepara KMnO ₄ . K ₂ Cr ₂ O ₇ Monsanto process	evaluation and testing . applications . anodizing . principle oplating . objectives, theory and method . electroplating of ni g . galvanizing . tinning. ELECTROSYNTHESIS tion of inorganic compounds . fluorine . peracids and their sa - Organic electrosynthesis . hydromerisation of acrylonitri	and and ckel 9 Its . le .
influencing factors . applications - electr . electroless plating MODULE IV Electrolytic prepara KMnO ₄ . K ₂ Cr ₂ O ₇ Monsanto process	evaluation and testing . applications . anodizing . principle oplating . objectives, theory and method . electroplating of ni g. galvanizing . tinning. ELECTROSYNTHESIS tion of inorganic compounds . fluorine . peracids and their sa - Organic electrosynthesis . hydromerisation of acrylonitri . manufacture of ethylene glycol . electrolysis of org	and and ckel 9 Its . Ie .

recov	ery . electro-filtration of partic	ulates	from gases . electrodialysis . desalination
. elec	ctroflotation.		
			L – 45; Total Hours –45
DEEE			
REFE	RENCES:		
1.	PH Rieger Electrochemistry	/ Pren	tice Hall, Inc., New York, 1987.
2.			stry, Chapman and Hall, London, 1982.
3.	J. Bockris and A.K.M. Red	ddy, N	Iodern Electrochemistry, Volume II, Mac
	Donold, London, 1970.		
4.	C. Rajagopal and K. Vasu, C	onvers	ion Coatings, 1 st Edition, Tata McGraw Hill,
	New Delhi, 2000.		
Ουτα	COMES:		
The s	tudent will be familiar with the		
•	electrowinning,		
•	electrorefining,		
•	electrochemical metal finishir	ng,	
•	electrosynthesis		
•	electrodialysis.		

CHCY022 CORROSION AND CORROSION CONTROL		L	Т	Ρ	С	
		3	0	0	3	
OBJECTIVES:	OBJECTIVES:					
To make the stude	ent conversant with the					
Causes and	d theories of corrosion					
 Different type 	pes of corrosion					

• Basic concepts to prevent corrosion and testing of corrosion by various diagrams. Factors influencing corrosion Control of corrosion using various methods. CORROSION 9 MODULE I Causes and effects of corrosion . theories of corrosion . oxidation . direct atmospheric effect . electrochemical corrosion . hydrogen evolution . presence and absence of oxygen . corrosion by gaseous reduction. FORMS OF CORROSION 9 MODULE II Galvanic bimetal corrosion . differential aeration corrosion . concentration cell corrosion . erosion corrosion . pitting corrosion . underground soil corrosion . intergranular corrosion . stress corrosion . seasonal cracking of alloys . caustic embrittlement . corrosion fatigue. **CORROSION TESTING** 9 MODULE III Rate of corrosion . calculation of G and other related thermodynamic parameters . potential measurement . electrochemical series . redox reactions . EMF measurement and corrosion current . anodic and cathodic behaviour of metals . passivity. testing of virgin metals. alloy. Pourbaix and Evans diagrams. FACTORS INFLUENCING CORROSION 9 MODULE IV Nature of metal . over voltage . areas of anodic/cathodic . purity of metal . physical state of metals. passive nature of metal. solubility. volatility of corrosion products. corroding environment . influence of pH . ions . formations of cells . polarization of electrodes. **CORROSION CONTROL** 9 MODULE V Design . selection of materials . pure metals and alloys . annealing . elimination of

galvanic action . cathodic protection . sacrificial anodic protection . impressed

current cathodic protection . modification of environment . deaeration dehumidification . inhibitors . protective coatings . preparation of materials for coating . metallic and non-metallic . organic coatings . special paints . varnish, enamel and lacquers. L – 45; Total Hours –45 **REFERENCES:** M.G. Fontana and N.G. Green, Corrosion Engineering, McGraw Hill Book 1. Company, New York, 1984. 2. J.H. Brophy, R.M. Rose and J. Walf, The Structure and Properties of Materials, Wiley Inter Science Inc., New York, 1984. 3. B.T. Kelly, Irradiation Diamagneto Solids, Pergamon Press, New York, 1992. 4. D.R. Cross, Principles and Applications of Electrochemistry, Chapman and Hall, UK, 1988. **OUTCOMES:** Students will become familiar with the basic concepts of corrosion, • factors which influence the corrosion • mechanism of corrosion control of corrosion in real situation.

CHCY023	ELECTROCHEMICAL	PROTECTION	L	Т	P	С
			3	0	0	3
			I	•		•
OBJECTIVES:						
To make the stude	ent to learn about the					

- cathodic protection
- Sacrificial anode system
- Impressed current cathodic protection
- Design of Anodic and cathodic protection

MODULE I	CATHODIC PROTECTION

Fundamental aspects, Definition of cathodic protection using Evans diagram and Pourbaix diagram, Derivation of protective potential for steel protective potentials of different metals. Criteria for cathodic protection, half cells used in cathodic protection potential measuring devices, rectifiers, zero current ammeter, automatic control MODULEs, holiday detectors.

MODULE II	SACRIFICIAL ANODE SYSTEM	9

Principle of sacrificial anodes, required properties of galvanic anodes, anode life, current output. Advantages and limitations of sacrificial anodes-shape - and size of anodes, inserts, back-fills: Magnesium anode-electrochemical properties, current density, anode consumption, composition field of application. Aluminium anode - electrochemical properties, composition, field of application - Zinc alloy anodes - electrochemical properties, composition, field of application.

MODULE III IMPRESSED CURRENT CATHODIC PROTECTION

9

Principle of impressed current system - DC power sources, cables, advantages and limitation, required properties of impressed current anode. Consumable anodes, Scrap steel, Aluminum -properties consumption - field of application. Permanent anodes, Graphite, High Silicon Iron, magnetite, platinum and platinum alloys platinised titanium, platinised Niobium, platinised tantalum, Metal oxide anodes lead alloy anode, properties, composition, consumption, field of application. Back fills for impressed current anodes.

MODULE IV	DESIGN OF CATHODIC PROTECTION	

Cathodic protection to buried structures - Field data, soil resistivity, pH determination redox potential measurement, potential measurement, long line current survey,

9

coating resistance, current drainage survey - Designing of sacrificial anode system, designing of impressed current system - Designing of CP to buried pipe line, ship hull and storage tank.

MODULE V Design of Anodic protection	
--------------------------------------	--

Anodic protection: Principles of anodic protection-description of electrochemical passivity, characteristics of anodic polarisation curves, the passive metal layer and mechanism of iron passivity, passivity breakdown. Equipments for anodic protection-characteristics of cathodes, platinum clad cathode, Hastelloy - cathodes, stainless steel cathode. Reference electrodes-calomel half cell, silver/silver chloride half cell, mercury/mercury sulphate half cell, metal oxide and metals as reference electrodes. Design, operation and maintenance of anodic protection system. Establishing electrochemical parameters, operation and maintenance applications.

L – 45; Total Hours –45

REFERENCES:

1. John H. Morgan, Cathodic Protection, New Age International, 2nd Edition, 1987.

2. Glen, L. Riggs, Anodic Protection, Kluwer Academic Publication, 1981.

OUTCOMES:

The students will be familiar with the

- cathodic protection
- Sacrificial anode system
- Impressed current cathodic protection
- Design of Anodic and cathodic protection

CHCY024	METAL COATING TECHNOLOGY	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:		
To make the stude	nt to know about	
	surface coating methods to preserve the metal surface	
	thods of coating	
electron bea	·	
MODULE I	SURFACE CHEMISTRY OF ALLOYS	9
Basic physical che	mistry, surface chemistry, pretreatment principle - technology	/ and
	deposition systems such as alloy plating, electrolysis, compo	
and non aqueous.		
MODULE II	METHODS OF COATING I	9
Hot dip coatings	principle, surface preparation, methods, applications, Diffe	usion
	- Cementation - Cladding - case hardening - structures.	
MODULE III	Methods of coating II	9
	Methods of coating II eposition - classification-techniques, metal organic type, pla	
Chemical vapor de assisted, layer assi	Methods of coating II eposition - classification-techniques, metal organic type, pla isted, applications.	asma
Chemical vapor d	Methods of coating II eposition - classification-techniques, metal organic type, pla	
Chemical vapor de assisted, layer assi MODULE IV	Methods of coating II eposition - classification-techniques, metal organic type, pla isted, applications. METHODS OF COATING III	asma
Chemical vapor de assisted, layer assisted MODULE IV Sputtering techni	Methods of coating II eposition - classification-techniques, metal organic type, pla isted, applications. METHODS OF COATING III	asma 9
Chemical vapor de assisted, layer assisted MODULE IV Sputtering techni	Methods of coating II eposition - classification-techniques, metal organic type, plated, applications. METHODS OF COATING III ques, methods, applications, plasma treatments, nitri-	asma 9
Chemical vapor de assisted, layer assisted, layer assisted MODULE IV Sputtering techni carbonizing, boridir	Methods of coating II eposition - classification-techniques, metal organic type, platested, applications. METHODS OF COATING III ques, methods, applications, plasma treatments, nitring, titanizing methods and applications.	asma 9 ding, 9
Chemical vapor de assisted, layer assisted, layer assisted MODULE IV Sputtering techni carbonizing, boridir MODULE V Laser alloying - so	Methods of coating II eposition - classification-techniques, metal organic type, platested, applications. METHODS OF COATING III ques, methods, applications, plasma treatments, nitring, titanizing methods and applications. LASER ALLOY AND ELECTRON BEAM COATING	asma 9 ding, 9

REFERENCES:

- 1. T.S. Sudarsan, Surface Modification Technologies, Marcel Dekker Inc., 1989
- 2. D.R. Gabe, Principles of Metal Surfaces Treatment and Protection, Pergmon Press 1972.

OUTCOMES:

The student will be familiar with the

- pretreatment methods before coating
- Galvanizing and tinning and cladding
- Chemical vapour deposition
- Sputtering and laser alloying methods to preserve the metal surface.

CHCY025	PROTECTIVE COATINGS	L	Т	Ρ	С
		3	0	0	3
				I	
OBJECTIVES:					
To make the stude	ent to learn the				
organic and	I inorganic coatings to protect the surface.				
 Electroplati 	ng				
Evaluation	of paints				
Special pair	nts				
Inorganic c	pating materials				
MODULE I	PIGMENTS AND RESINS				9
Pigments and add	litives used in paints - properties and functions -	Inor	ganic	, org	ganic
and metallic pigme	ents - Extenders - Driers. Natural resins - chemistr	y an	d pro	oper	ties -

shellac Rosin, rubber oils used for surface coatings - preparation and properties of synthetic resins - alkyds - phenolic - vinyls - amino resins - acrylics - epoxies - urethanes - silicones. Formulation of paints and rheological characteristics - Importance of pigment volume concentration, volume solids etc., water based paints, composition and properties - factors affecting water solubility.

MODULE II	ELECTROPLATING

Surface preparation for paint applications, methods of surface preparation - methods of application of paints brushing - roller coating - compressed air spraying - airless spraying - electrostatic spraying - Electrodeposition of Paints and Electropolymerization Electrokinetic phenomena involved in electrodeposition fundamental principle, formulation of bath - anodic and cathodic deposition - advantages over conventional methods.

MODULE III	TESTING AND EVALUATION OF PAINTS	9

Testing and evaluation of liquid paints and coatings - specific gravity - viscosity - time of grind - thickness - hardness, abrasion - flexibility - electrochemical and accelerated tests - field exposure tests - paint film defects - identification and remedial measures.

MODULE IV	PAINTS FOR FUNCTIONAL APPLICATIONS	9

Paints for automobiles - aircrafts - marine paints (ships) chemical resistant coatings -Paints for pipe line, paints for various substrates other than metals - paints for concrete - wood - plastic - powder coatings - basic and application principle.

MODULE V	INORGANIC COATI	NGS	9
Conversion coating ceramic coatings.	s - phosphating, chror	nating of ferrous and non-ferrous meta	als -
		L – 45; Total Hours	-45

REFERENCES:

- John Williams, Organic Coating Technology Payne, Volume I and II, Henry Fleming Sons Inc., New York London, 1961.
- 2. Gosta Wranglen, An Introduction to Corrosion and Protection Of Metals, Institute for Metals Kgdd, Stockholm, 1972.
- 3. Charles G. Munger, Corrosion Prevention by Organic Coating, NACE 1984.
- 4. H.W. Chatfield, (Editor)s, The Science of Surface Coating, Published: Ernest Benn Limited London, 1962.
- 5. Willibald Machu, Hand Book of Electropainting Technology, Electrochemical Publication Limited 1978.

OUTCOMES:

The students will be familiar with the

- Surface preparation methods
- Different types of paints, their constituents and fictions
- Constituents and functions of paints
- Inorganic coating methods

CHCY026	FUEL CELLS AND APPLICATIONS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES:	tive of the course is make the student converse	ant with			
	on and types of fuel cell				
	nponents of fuel cells				
 performance 	ce for fuel cells				
 hydrogen s 	torage and production				
 the applica 	tions of fuel cells				

MODULE I	INTRODUCTION AND TYPES OF FUEL CELLS

Introduction - definition - history - difference between batteries and fuel cells - chemistry of fuel cells - classification of fuel cell (based on temperature and electrolyte) . types of fuel cell: polymer electrolyte membrane or proton exchange membrane fuel cell (PEMFC), direct methanol fuel cell (DMFC), alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC) and solid oxide fuel cells (SOFC)

MODULE II	FUEL CELL COMPONENTS	9
Membrane electro	de assembly components : membranes and ionomers, fuel of	المر
	as diffusion laver, fuel cell electrocatalysts - bi-polar plate	

humidifiers and cooling plates - fuel cell stack

MODULE III	FUEL CELLS PERFORMANCE AND APPLICATIONS	9

Thermodynamics of fuel cells - electrochemical kinetics of fuel cells - Fuel cell efficiency - performance characteristics:, voltage efficiency - effect of voltage with current density for low and high temperature fuel cells- causes for voltage losses-introduction to fuel cycle analysis

MODULE IV	PRODUCTION AND STORAGE OF HYDROGEN FUEL	9

Hydrogen as energy source -its merit as a fuel - hydrogen storage: compressed hydrogen, liquid hydrogen, metal hydrides, carbon fibers . hydrogen production : steam reforming, partial oxidation, coal gasification/thermal reforming, fuel cell technology based on bio-mass

MODULE V	FUEL CELL APPLICATIONS	9
environment . disti	tions . road map to market . automotive industry and ibuted power generation . grid-connect applications . non- s . residential power . portable power . combined heat and po	-grid
	L – 45; Total Hours	-45

REFERENCES: 1. R.H. Thring (Editor), Fuel Cells for Automotive Applications, Professional Engineering Publishing UK, 2004. 2. Gregor Hoogers (Editor), Fuel Cell Technology Handbook, SAE International, CRC Press, 2003. Vladimir S. Bagotsky, Fuel Cells: Problems and Solutions, 2nd Edition, John 3. Wiley and Sons, 2012. 4. B. Viswanathan and M. Aulice Scibioh, Fuel Cells: Principles and Applications, Taylor and Francis Group, 2007. 5. Supramaniam Srinivasan, From Fundamentals to Applications, Springer, 2006. 6. Prospects for Hydrogen and Fuel Cells, International Energy Agency, OECD Publishing, 2005. **OUTCOMES:** The student will be able to 1) classify fuel cells and elaborate the different types of fuel cells. 2) explain the various components of the fuel cells

- 3) calculate the open circuit voltage, efficiency and voltage losses, explain fuel cycle analysis and prove the laws of thermodynamics for fuel cell.
- 4) describe the various methods for production and storage of hydrogen.
- 5) list out the applications of fuel cells.

CHCY027	ADVANCED BATTERIES AND SYSTEMS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES:					
The students w	ill be trained about the				

 different type 	es of batteries	
design and	operation of different types of batteries	
MODULE I	Ni-MH BATTERIES	9
Advanced Ni-MH	Batteries: Introduction to Ni-MH batteries, overview of Ni	MH,
Improvement in h	nydrogen storage alloys, improvement in Cathode mate	rials,
improvement in sep	parator and cell design.	
MODULE II	Li- ion BATTERIES	9
Advanced Li-ion B	atteries: Lithium-ion battery, The Principle carbonaceous a	node
materials, cathode	material Electrolyte, separator.	
MODULE III	PERFORMANCE OF LITHIUM BATTERIES	9
Advanced Cathode	Let materials for Lithium Batteries: The intercalative react	ions,
relationships betwe	een performance requirements and materials characteristic	s D
•	oltage, energy, power, cycle life, shelf life.	
otability, capacity, v		
MODULE IV	Li/POLYMER BATTERIES	9
Li/polymer Batterie	s: Polymer cathode for Li battery, Polymer Cathode in S	SPE,
conductivity, ion tra	nsport mechanisms, plasticized electrolytes.	
	ULTRA CAPACITORS	9
MODULE V		9
Ultra capacitors: Do	Louble layer, Metal Oxide, conducting polymers energy and p	ower
·	mitation and self discharge.	
	L – 45; Total Hours	s –45
REFERENCES:		
1. Energy Storage	Systems for Electronics Edited by Tetsuya Osaka, Departme	nt of
Applied Chemis	stry, Wasuda University, Tokyo, Japan and Madhav Dutta,	Intel
	llsboro, USA.	

- 2. M. Barak, Electrochemical Power Sources, IEEE Series, Peter Peregrinus Ltd.
- 3. Lindar D., Handbook on Batteries and Fuel Cells, McGraw Book Co., New York, 1955.

OUTCOMES:

The student will have

- A thorough understanding about batteries and their components
- Understand the working up of the batteries

CHCY028	ELECTROCHEMICAL MATERIAL SCIENCE	L	T	Ρ	С
		3	0	0	3
OBJECTIVES:					
To make the stud	lent to learn about the				
Different ty	pes of semiconductors				
Preparatio	n and properties of the semiconductors				
Application	n in photovoltaic cells				
MODULE I	SEMICONDUCTORS				9
Semiconductors,	n-type and p-type semiconductors, conductivity of	of ser	nicol	nduc	tors,
applications, of	semiconductors, Photo conductivity, Photo con	ducti	ng r	nate	rials,
electronic transi	tions in photoconductors, trapping and recom	nbinat	tion,	gei	neral
mechanism of p	hotoconductivity, life-time of majority carriers, pr	repara	ation	of	CdS
photoconductors	by the sintering technique, ohmic contacts, fal	bricat	tion	of p	hoto
conductive cells a	and their applications.				
MODULE II	METHODS OF PREPARATION				9
Thin films of	semiconductors, methods of preparation: vac	uum	eva	pora	l ition,

9

9

sputtering, molecular beam epitaxy, hot wall epitaxy, chemical bath deposition, spray pyrolysis, electrodeposition, liquid phase epitaxy, chemical vapor deposition, structural, electrical and optical characterization, mechanical properties of thin films, effect of grain boundaries.

MODULE III LUMINESCENCE

Luminescence, various types of luminescence (definitions only) model of luminescence in sulphide phosphors, applications, basic aspects of superconductivity, super conducting materials, high temperature, super conducting materials, method of preparation and applications.

MODULE IV

PHOTOVOLTAICS

Basic of photovoltaics, homo and heterojunctions, preparation of single crystals and polycrystalline silicon solar cells, Metal-Insulator-Metal and semiconductors - Insulator-semiconductors solar cells, photovoltaic measurements - I-V characteristics, spectral response and capacitance measurements.

MO	DL	JLE	E V

SOLAR CELLS AND PEC CELLS

Preparation of CdS/CU₂S solar cells by screen printing technique and their characteristics, amorphous Si solar cells GaAs solar cells, Semiconductors electrolyte interface. Photoelectrochemical (PEC) cells for conversion of light energy to electrical energy, PEC cells based on CdSe Si and GaAs and their output characteristics, Estimation of flat band potential from Mott-Schottky plots.

L – 45; Total Hours –45

REFERENCES:

- 1. B.S. Saxena, R.C. Gupta and P.N. Saxena, Fundamentals of Solid State Physics, Pragati Prakashan Educational Publishers, Meerut, 2001.
- 2. K.L. Chopra and I. Kaur, Thin Film Devices and their Applications, Plenum Press, New York, 1983.

A.C. Rose D. Innes and E.H. Rhoderick, Introduction to Superconductivity, 3. Robert Maxwell Publishers, 1988. Photoelectrochemical Solar Cell, Edited By K.S.V. Santhanam and M. Sharon, 4. Elsevier Science Publishers, BV New York 1988. 5. C. Hu and R.M. White, Solar Cells, McGraw Hill Book Company, New Delhi, 1983 6. R.K. Kotnala and N.P. Singh, Essentials of Solar Cells, Allied Publishers Pvt. Ltd., Chennai, 1992 7. A.F. Fahrenbruch and R.H. Bube, Fundamentals of Solar Cells, Academic Press, London 1983. W.E. Hatified and J.H. Miller (Editors), High Temperature Superconducting 8. Materials, Marcel Dekker, New York 1988. **OUTCOMES:** To make the student to learn about the electrochemical cells and their types •

- factors affecting battery performance
- application of batteries
- testing in fuel cells

CHCY029	ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE		Т	Ρ	С
			0	0	3
OBJECTIVES:					
MODULE I	FUNDAMENTALS				9
EMF, Reversible cells, Reversible electrodes, relationship between electrical ener					

and energy content of a cell, force energy changes and EMF in cells, relationship between the energy changes accompanying a cell reaction and concentration of the reactants, effect of sulphuric acid concentration on EMF in the lead acid battery, effect of cell temperature in lead acid battery, derivation of number of electrons involved in a cell reactions, thermodynamic calculation of the capacity of a battery, calculation of the capacity of a battery, calculation of operating parameters for a lead acid battery from calorimetric measurements, calculations of energy density of cells, heating effects in batteries, spontaneous reaction in electrochemical cells, pressure development in sealed batteries.

MODULE II

FACTORS AFFECTING BATTERY PERFORMANCE

9

Factors affecting battery capacity, voltage level current drain of discharge, types of discharge continuous, intermittent, constant current, constant load, constant power, temperature of battery during discharge, service life, voltage regulation, changing voltage, effect of all design, battery age and storage condition, effect of battery design.

MODULE III

SELECTION AND APPLICATION OF BATTERIES

9

Major consideration in selecting a battery, battery applications, comparative features and performance characteristics, characteristics of batteries for portable equipment, cost effectiveness, other comparison of performance criteria for battery selection D probable equipment.

MODULE IV

TESTING AND EVALUATION

9

Evaluation of active masses, Porosity - mercury porosity meter, liquid absorption method, Surface area measurement - BET method (nitrogen absorption), internal resistance of cells - D.C. methods, polarization elimination method - I.E. polarization and flash current method A.C. methods, A.C. impedance method, testing of storage batteries - capacity test for retention of charge, vibration test, life test, efficiency test, leakage test for sealed cells, testing of separators, HRD at normal and low temperature.

_

101.00	•	Onernioury			rtegulations zt	
r						
MOD	ULE V	FUEL CELLS AND SUPER CAPACITOR				
Introc	Juction Types	of Fuel cells	figuro	of merit, electro catal	vete for hydro	aon
			•	nemical double layer cap	•	•
				icitors with proton condu		
	olytes.		iai cape		curig solid poly	mer
0000	olytoo.					
				L – 4	5; Total Hours	-45
REFE	ERENCES:					
1.	Barak, Electr	rochemical Pov	ver sou	rces, IEEE Series, Pete	er Peregrinus	Ltd.,
	Steverage, U	K 1980, 1997.				
2.	N. Corey Ca	hoon and Geo	rge W.	Heise, Primary Battery	(Volume I and	d II),
	John Wiley N	ew York, 1971	and 19 ⁻	76 London.		
3.	Linden D. Ha	and Book on Ba	atteries	and Fuel Cell, McGraw I	Hill Book Co., I	New
	York 1955.					
4.	J.P. Gabano,	Lithium Batteri	es, Aca	demic Press, London, 19	983	
5.	T.R. Crompto	on, Batteries Re	eference	Book, Batterworths, Lor	ndon.	
6.	G.W. Vinal, S	Storage Batterie	s, John	Wiley, New York 1955.		
	COMES:					
001						
The s	tudents will be	familiar with				
•	electrochemie	cal cells and the	eir types	3		
•	factors affecting battery performance					
•	application of	batteries				
•	testing in fuel	cells				

CHCY030	SOLAR ENERGY	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

The students will be conversant with the

- Sustainable energy conversion proceses
- Fundamentals of solar cells
- Solar electrical energy conversion
- Nanomaterials as photovoltaics
- Different types of solar cells

MODULE I INTRODUCTIONS TO SUSTAINABLE ENERGY 9 CONVERSION PROCESSES

Photovoltaic, Photothermal, Photoelectrochemical, Biofuel, Wind Power, and Geothermal Systems. Insolation vs. world energy demand, Current energy consumption from different sources, Renewable Energy Resources; Utilization, Storage, and Economic limitations Solar energy: Thermonuclear energy source, Planck Law, Thermal radiation fundamentals, Solar Radiation Table: extraterrestrial and terrestrial radiations; Solar constant, Air Mass, Spectral Irradiance, Mean annual irradiance on horizontal surface across the world, Radiation on an inclined surface: direct, reflected, and diffused radiations, Global solar radiation data.

MODULE II	SOLAR CELL FUNDAMENTALS	
Photovoltaic effect	Principle of direct solar energy conversion into electricity	in a
solar cell. Semicon	ductor properties, energy levels, basic equations. Solar cell,	p-n
junction, structure.		

MODULE III	SOLAR ELECTRICAL ENERGY CONVERSION	9

Solar photovoltaic energy conversion - Principles - Physics and operation of solar cells. Classification of solar PV systems, Solar cell energy conversion efficiency, I-V characteristics, effect of variation of solar insolation and temperature, losses. Solar PV power plants.

MODULE IV

9

9

Photochemical solar cells, PV panels with nanostructures. Phase compositions on nanoscale microstructures . role of nanostructures and materials . nanomaterials in solar photovoltaic technology- band gap engineering and optical engineering - tandem structures - quantum well and quantum dot solar cells - photo-thermal cells . organic solar cells. Performance and reliability of nanomaterials based solar cells.

MODULE V	SOLAR CELLS

Formation of a pn . junction - Space charge and internal field - Quasi - Fermi levels -The Shockley diode equation - Structure of a solar cell - The solar cell equation - Fill factor and maximum power - Various electron - hole-pair recombination mechanisms -Crystalline silicon solar cells - Thin film solar cells: CIGS, Cite and a . silicon -Tandem solar cells - Dye - sensitized solar cells - Organic solar cells. Thin film solar cells, Amorphous silicon (a-Si) solar cells, Cadmium Telluride (Cd-Te) Solar cells, Cu(InGa)Se2 solar cells, Dye-sensitized solar cells, Organic and polymer solar cells. Photoelectrochemical hydrogen production, photoelectrochemical cells, solar-tohydrogen efficiency; Hydrogen storage, hydrogen economy, Electrochemical Storage of energy, Current developments in energy storage.

L – 45; Total Hours –45		
	1	

REFERENCES:

- Photoelectrochemical Solar Cell, Edited By K.S.V. Santhanam and M. Sharon, Elsevier Science Publishers, BV New York 1988.
- 2. C. Hu and R.M. White, Solar Cells, McGraw Hill Book Company, New Delhi, 1983
- R.K. Kotnala and N.P. Singh, Essentials of Solar Cells, Allied Publishers Pvt. Ltd., Chennai, 1992
- 4. A.F. Fahrenbruch and R.H. Bube, Fundamentals of Solar Cells, Academic Press, London 1983.

OUTCOME	S:
The student	s will be acquainted with the
•	Sustainable energy conversion processes
•	Fundamentals of solar cells
•	Solar electrical energy conversion
•	Nanomaterials as photovoltaics
•	Different types of solar cells

	CHEMISTRY OF CARBOHYDRATES L	Т	Ρ	С
	3	0	0	3
OBJECTIVES:				
To make the stu	ident conversant with			
The basic	c concepts in carbohydrates			
 Structura 	l and spectroscopic analysis of sugars			
 Various s 	synthetic methodologies of carbohydrates			
Carbohy	drates as chiral synthons			
 Basics or 	n glycans and glycoconjugates			
MODULE I	CLASSIFICATION OF SUGARS			9
Definition and	 classification of sugars, nomenclature, aldoses a	and	ketc	ses.
	(+)- glucose: the Fischer proof, ring structures and			
•	nomericity, Naturally occurring monosaccharides, olig			
	rides, three-dimensional structure of macromolecular carl			
MODULE II	STRUCTURAL AND SPECTROSCOPIC ANALY	SIS	OF	8
	CARBOHYDRATES			
Methods for is	olation, purification and structural analysis, complete	e an	d pa	artial
	ethylation analysis, Smith degradation, chromatog		-	
		grapr	nic	and
hydrolysis, me	techniques, advanced spectroscopic techniques.	grapr	nic	and
hydrolysis, me electrophoretic t		grapr	nic	and 10
hydrolysis, me	techniques, advanced spectroscopic techniques.	grapr		
hydrolysis, me electrophoretic t MODULE III	techniques, advanced spectroscopic techniques.			10
hydrolysis, me electrophoretic t MODULE III Chemical reacti	CHEMICAL REACTIONS OF CARBOHYDRATES	of de	rivat	10 ives,

MODULE IV	CARBOHYDR	ATES	AS SYNTHONS	10			
Use of protecting groups, chemical and enzymatic synthesis of oligosaccharides,							
carbohydrates as ch	niral synthons fo	r natur	al products synthesis.				
MODULE V	GLYCANS AN	ID GLY	COCONJUGATES	8			
Carbohydrate biopo	olymers, animal	glycop	roteins, blood-group substances, plant	and			
algal glycoproteins,	, proteoglycans	and	glycosaminoglycans, glycolipids, biolog	gical			
functions of glycar	n chains in gly	ycocon	jugates, carbohydrates and carbohyd	Irate			
components of nucl	eic acids and an	ntibiotic	S.				
			L – 45; Total Hours	_15			
				-45			
REFERENCES:							
1. J.F. Kennedy a	nd C A White F	Rinactiv	e Carbohydrates, Ellis Horwood, New Y	/ork			
1983		Juactiv	e Carbonyurates, Lins Horwood, New 1	UIK,			
 R.W. Binkley, Moden Carbohydrate Chemistry, Marcell and Dekker, New York., 1988 							
 J.F. Kennedy (Ed.) Carbohydrate Chemistry, Oxford University Press, Oxford, 1988. 							
 E.A. Davidson, Carbohydrate Chemistry, Holt, Rinehart & Winston Inc., Mew York, 1967. 							
5. A.F.Bochkov and G.E. Zaikov, Chemistry of the O-Glycosidic Bond Formation							
and Cleavage, Pergamon, Oxford, 1979.							
6. S.Hanessian, Total Synthesis of Natural Products: The Chiron Approach,							
Pergamon, Oxford. 1983.							
OUTCOMES:							

The students will be able to

- Recognize the different types of carbohydrates
- Acquire knowledge about the structural and spectroscopic analysis of carbohydrates
- Recognize and depict the mechanism of carbohydrate based chemical reactions
- Identify chiral based carbohydrates as synthons
- Understand the basics of glycans, glycoproteins and glycoconjugates.

CHCY032	ADVANCED	CONCEPTS	IN	ORGANIC	L	Т	Ρ	С
	SYNTHESIS				3	•		0
					3	0	0	3
OBJECTIVES:								
To make the stu	udent conversant	with						
 Different 	organometallic re	actions in organ	ic synt	hesis				
 Various 	types of coupling r	eactions						
 Transitio 	on metal based che	emical reactions						
 Oxidation 	n and reduction re	actions						
 Few nan 	ned reactions							
MODULE I	ORGANOM	ETALLIC REAC		S				9
0		<u> </u>	<u></u>					
-	reagents of Al, Cu			-			-	
addition to im	ines, imine deriv	atives and car	boxylic	c acid deriva	ates;	; Ca	irbar	nion
addition to im stabilized by N	ines, imine deriv I, B, S, Si and S	atives and car Se, containing g	boxylio Iroups	c acid deriva	ates; ; tra	; Ca nsitio	irbar on n	nion neta
addition to im stabilized by N	ines, imine deriv	atives and car Se, containing g	boxylio Iroups	c acid deriva	ates; ; tra	; Ca nsitio	irbar on n	nion neta
addition to im stabilized by N enolates, meta	ines, imine deriv I, B, S, Si and S	atives and car Se, containing g mmetric synthe	boxylio Iroups	c acid deriva	ates; ; tra	; Ca nsitio	irbar on n	nion neta
addition to im stabilized by N enolates, meta	ines, imine deriv I, B, S, Si and S Illoenamines, asynons; Passserini and	atives and car Se, containing g mmetric synthe	boxylio Iroups	c acid deriva	ates; ; tra	; Ca nsitio	irbar on n	neta lose
addition to im stabilized by N enolates, meta coupling reaction	ines, imine deriv I, B, S, Si and S Illoenamines, asynons; Passserini and	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS	boxylia groups sis wi	c acid deriva ; epoxidation; th enol ethe	ates; ; tra rs; I	; Ca nsitio Esch	nrbar on n enm	
addition to im stabilized by N enolates, meta coupling reaction MODULE II Alkylation of e	ines, imine deriv I, B, S, Si and S Illoenamines, asyn ons; Passserini and COUPLING	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS	boxylic groups sis wi	c acid deriva ; epoxidation; th enol ether pilized carbar	ates; ; tra rs; I	; Ca nsitio Esch s; cy	urbar on n ienm	neta ose
addition to im stabilized by N enolates, meta coupling reaction MODULE II Alkylation of e reactions; coup	ines, imine deriv I, B, S, Si and S Illoenamines, asyn ons; Passserini and COUPLING enols, enolates; st	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS tabilized and no d rearrangemer	boxylic groups sis wi on-stal	c acid deriva ; epoxidation; th enol ether bilized carban ditions to ar	ntes; tra rs; I	; Ca nsitio Esch s; cy ubsti	irbar on n ienm ycliza itutio	neta ose atio
addition to im stabilized by N enolates, meta coupling reaction MODULE II Alkylation of e reactions; coup carbon-carbon	ines, imine deriv I, B, S, Si and S Illoenamines, asyn ons; Passserini and COUPLING mols, enolates; st pling reactions an	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS tabilized and no d rearrangement prates and cor	boxylic groups sis wi on-stal nts; ac njugate	c acid deriva ; epoxidation; th enol ether oilized carbar ditions to ar e reactions; r	ates; ; tra rs; I nion: nd s nucle	; Ca nsitio Esch s; cy ubsti eoph	ycliza itutio	neta neta nose atio n a wit
addition to im stabilized by N enolates, meta coupling reaction MODULE II Alkylation of e reactions; coup carbon-carbon cationic pentad	ines, imine deriv I, B, S, Si and S Illoenamines, asyn ons; Passserini and COUPLING mols, enolates; st bling reactions an bonds; organocu ienyl- metal compl	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS tabilized and no d rearrangement prates and cor	boxylic proups sis wi on-stal nts; ac njugate lladiun	c acid deriva ; epoxidation; th enol ether ditions to ar e reactions; r n reagents; ca	nion nion nucle	; Ca nsitio Esch s; cy ubsti eoph	ycliza itutio	neta neta ose ation ation with
addition to im stabilized by N enolates, meta coupling reaction MODULE II Alkylation of e reactions; coup carbon-carbon cationic pentad	ines, imine deriv I, B, S, Si and S Illoenamines, asynons; Passserini and COUPLING Inols, enolates; st oling reactions an bonds; organocu ienyl- metal compl	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS tabilized and no d rearrangemen prates and cor exes; organopa	boxylic groups sis wi on-stal nts; ac njugate lladiun	c acid deriva ; epoxidation; th enol ether dilized carban ditions to ar e reactions; r n reagents; ca	ates; ; tra rs; I nion: nd s nucle arboi	; Ca nsitio Esch s; cy ubsti eoph meta	ycliza itutio	neta ose atio on a withon.
addition to im stabilized by N enolates, meta coupling reaction MODULE II Alkylation of e reactions; coup carbon-carbon cationic pentad MODULE III Synthesis of su	ines, imine deriv I, B, S, Si and S Illoenamines, asymptotic COUPLING Prools, enolates; str bonds; organocu ienyl- metal compl TRANSITIO ulphides, sulphoxi	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS tabilized and no d rearrangemen prates and cor exes; organopa N METAL MED des, phosphoni	boxylic groups sis wi on-stal nts; ac njugate lladiun IATED um yli	c acid deriva ; epoxidation; th enol ether dilized carban ditions to ar e reactions; r n reagents; ca REACTIONS des and rela	ates; ; tra rs; I nion: nd s nucle arboi	; Ca nsitio Esch s; cy ubsti eoph meta	ycliza itutio illatic	nion neta ose atio on a wit on.
addition to im stabilized by N enolates, meta coupling reaction MODULE II Alkylation of e reactions; coup carbon-carbon cationic pentad MODULE III Synthesis of su	ines, imine deriv I, B, S, Si and S Illoenamines, asynons; Passserini and COUPLING Inols, enolates; st oling reactions an bonds; organocu ienyl- metal compl	atives and car Se, containing g mmetric synthe d Ugi reaction. REACTIONS tabilized and no d rearrangemen prates and cor exes; organopa N METAL MED des, phosphoni	boxylic groups sis wi on-stal nts; ac njugate lladiun IATED um yli	c acid deriva ; epoxidation; th enol ether dilized carban ditions to ar e reactions; r n reagents; ca REACTIONS des and rela	ates; ; tra rs; I nion: nd s nucle arboi	; Ca nsitio Esch s; cy ubsti eoph meta	ycliza itutio illatic	nion neta lose atio n a wit

transfer accelerated	d cyclization.		
MODULE IV	OXIDATION AND	EDUCTION REACTIONS	9
Oxidation by remote	e functionalisation, e	oxidation and asymmetric epoxic	dation; glyco
formation; electroch	emical oxidation; ox	lative rearrangements; solid-sup	port oxidants
and electron transfe	er reactions.		
Reduction by met	al hydrides; asym	etric hydrogenation; enzymatio	c reduction;
hydrozirconation, hy	droboration, hydroa	imination and hydrosilylation rea	ction.
MODULE V	NAMED REACTIC	15	9
Birch-Pearson, Dot	 z, Heck-Stille, Buchv	ald, Jacobsens, Hegedus, Mcmu	Irray, Novori
		s, Ritter type reaction, Nef reacti	•
	•	rov cationic cyclization.	,
		,	
		L – 45; Tota	al Hours –45
REFERENCES:	1		
Efficiency in Mod 2. E.J. Corey and 2 1989. 3. J.D. Morrison (Se	ern Organic Chemis XM.Cheng, The Lo eries Ed.) Asymmetri	ganic Synthesis: Selectivity, S y, Pergamon Press, Oxford, Vols jic of Chemical Synthesis, Wiley Synthesis Academic Press, Nev Norton and R.G. Finke, Pri	s 1-9, 1991. y, New York, v York.
Applications of C Valley, California	-	I Chemistry. University Science	Books, Mil

OUTCOMES:

The students will be able to

- Gain understanding on the various metals in organic reactions
- Depict the mechanism of organometallic reactions.
- Illustrate organic chemical reactions using transition metals.
- Understand the metal mediated oxidation and reduction of organic compounds
- Recognise the organometallic based named reactions.